
To appear SIGGRAPH 2006.

Multidimensional Lightcuts

Bruce Walter Adam Arbree Kavita Bala Donald P. Greenberg
Cornell University∗

Abstract

Multidimensional lightcuts is a new scalable method for efficiently
rendering rich visual effects such as motion blur, participating me-
dia, depth of field, and spatial anti-aliasing in complex scenes. It
introduces a flexible, general rendering framework that unifies the
handling of such effects by discretizing the integrals into large sets
of gather and light points and adaptively approximating the sum of
all possible gather-light pair interactions.
We create an implicit hierarchy, the product graph, over the gather-
light pairs to rapidly and accurately approximate the contribution
from hundreds of millions of pairs per pixel while only evaluating
a tiny fraction (e.g., 200–1,000). We build upon the techniques
of the prior Lightcuts method for complex illumination at a point,
however, by considering the complete pixel integrals, we achieve
much greater efficiency and scalability.
Our example results demonstrate efficient handling of volume scat-
tering, camera focus, and motion of lights, cameras, and geometry.
For example, enabling high quality motion blur with 256× tem-
poral sampling requires only a 6.7× increase in shading cost in a
scene with complex moving geometry, materials, and illumination.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture;
Keywords: motion blur, volume rendering, depth of field

1 Introduction

Multidimensional lightcuts is a new scalable system for efficiently
rendering complex effects such as motion blur, participating media,
depth of field, and spatial anti-aliasing, in scenes with complex illu-
mination, geometry, and materials. These effects can be expressed
as integrals over different domains, such as integrating over time
for motion blur and over the camera’s aperture for depth of field.
Our approach first discretizes these integrals into a sum over sets
of points and then provides a scalable and accurate method for es-
timating the total contribution from the resulting large point sets.
This approach both unifies the handling of the different integral do-
mains and allows us to solve simultaneously for multiple effects.
Our approach builds on the ideas and techniques of Lightcuts [Wal-
ter et al. 2005], which provided a scalable solution for computing
the illumination at a single point from multiple complex sources.
However we take a more holistic approach that considers the com-
plete integrals over an entire pixel. This enables greater efficiency
and scalability, as individual components may not need high accu-
racy as long as the total pixel estimate is accurate.

∗Program of Computer Graphics & Department of Computer Science
email:{bjw,arbree,kb,dpg}@graphics.cornell.edu

c©ACM 2006. This is the author’s version of the work. It is posted
here by permission of the ACM for your personal use. Not for
redistribution. The definitive version appears at SIGGRAPH and
the ACM Digital Library (http:doi.acm.org).

Figure 1: Results for the roulette and temple scenes demonstrating
motion blur and participating media. See Figure 4 for statistics.

We first discretize the integrals into a computation over two point
sets, gather points and light points, generated from the camera
and light sources respectively. The integrals can be approximated
by summing all the pairwise interactions between gather and light
points, but evaluating each pair would be prohibitively expensive.
Instead we create an implicit hierarchy, the product graph, over the
gather-light pairs, and use it to adaptively select a cut that partitions
the gather-light pairs into clusters. Similarly to Lightcuts, we use
conservative cluster error bounds and a perceptual metric to select
an appropriate cut. The contribution of each cluster is estimated by
selecting representative pairs from the clusters.
Our results demonstrate our ability to simultaneously handle mul-
tiple effects (e.g., Figure 1) including temporal and spatial anti-
aliasing, depth of field, specular surfaces, and participating media.
The method scales extremely well to efficiently handle hundreds
of millions of gather-light pairs per pixel. For example, for motion
blur in our roulette scene we can achieve the quality of 256x tempo-
ral supersampling with only a 6.7x increase in shading cost, and are
significantly faster than using the Metropolis algorithm (Figure 8).
Section 2 discusses related work. Section 3 introduces the prod-

1

Multidimensional Lightcuts, Walter et. al., To appear SIGGRAPH 2006. 2

uct graph and describes our algorithm. Section 4 discusses how
multidimensional lightcuts can be used to render rich visual effects.
Section 5 gives results, and we conclude in Section 6. Appendix A
covers some details about a refinement heuristic we use.

2 Previous Work

Our approach handles a wide range of visual effects. Here we focus
only on reviewing work related to computing the shading integrals
these effects require. We first discuss pure Monte Carlo approaches
as a general solution, and then consider special optimizations for
individual effects. See [Walter et al. 2005] for related work on the
general problem of scalable rendering of complex illumination.
Monte Carlo rendering is the most general approach for com-
puting the effects included in this paper; however even with opti-
mized sampling patterns (e.g., [Mitchell 1991]) it often converges
slowly. Two general approaches to reduce the cost of Monte Carlo
approaches are path reuse and importance sampling.
Most closely related to our research are path reuse algorithms. Al-
gorithms, like bidirectional path tracing [Lafortune and Willems
1993] and its variants [Bekaert et al. 2002; Havran et al. 2003],
generate and reuse camera and light paths but have trouble deal-
ing with the combinatoric explosion in potential path connections.
Our system is able to more intelligently sample the space of poten-
tial connections. Metropolis [Veach and Guibas 1997] and variants
[Cline et al. 2005] keep only a very small set of recent paths and use
path mutations and perturbations to adaptively explore path space.
However, their lack of global knowledge can limit their ability to
efficiently sample complex effects.
Importance sampling techniques improve convergence by intelli-
gent sample placement. [Lawrence et al. 2004] demonstrates an
importance sampling method for complex BRDFs based on a uni-
fying factored representation. [Lawrence et al. 2005; Clarberg et al.
2005; Burke et al. 2005; Talbot et al. 2005] focus on multiple im-
portance sampling of BRDFs and HDR environment maps, primar-
ily to accelerate direct illumination. While importance sampling
is powerful, it is hard to effectively importance sample the com-
plex effects supported in this paper. Also, while the scalability
of our method makes initial point selection less crucial, many im-
portance sampling techniques could be incorporated into our initial
point generation phase to further improve our performance.
Photon mapping has been extended to render effects such as
participating media [Jensen and Christensen 1998] and motion
blur [Cammarano and Jensen 2002]. However, these approaches
limit themselves to reducing the cost of indirect illumination and
rely on traditional techniques for direct illumination. Our lightcuts-
based approach unifies the handling of direct and indirect and is
more efficient in scenes with complex direct illumination.
Motion blur literature is reviewed in detail in [Sung et al. 2002]
and [Damez et al. 2003] presents a comprehensive survey of global
illumination techniques for dynamic scenes.
The motion blur system in Maya [Sung et al. 2002] uses an ana-
lytic visibility computation similar to [Korein and Badler 1983] to
analytically sample visibility changes, but relies on supersampling
for shading changes. Our approach greatly reduces supersampling
costs and is complementary to their methods. The Reyes architec-
ture [Catmull 1984; Cook et al. 1987] dices geometry into sub-pixel
pieces called micro-polygons. Motion blur due to visibility changes
is approximated by warping micro-polygons, but temporally chang-
ing shading still requires supersampling.
Several methods [Myszkowski et al. 2000; Myszkowski et al. 2001;
Tawara et al. 2004] for accelerating the rendering of animated se-
quences produce an approximation of motion blur as a side effect of
reusing shading information between frames. There are also image-

based methods [Max and Lerner 1985; Wloka and Zeleznik 1996]
that approximate motion blur by sacrificing correctness for speed.
However, both types of methods focus on producing a qualitative,
but not necessarily correct, approximation of motion blur.
Volumetric and participating media rendering techniques are sur-
veyed in [Cerezo et al. 2005]. Interactive approaches, e.g., [Sun
et al. 2005], make simplifying assumptions, such as only simulat-
ing single scattering or ignoring occlusion, to achieve performance
at the cost of accuracy. [Premoze et al. 2004] accelerates rendering
by precomputing a cache of approximate multiple scattering contri-
butions; however, these precomputations require data structures per
light and prohibit the use of complex illumination. Finally, [Pauly
et al. 2000] extends Metropolis light transport for participating me-
dia, but still requires high sampling rates.

2.1 Lightcuts

Lightcuts [Walter et al. 2005] introduced a scalable solution for
computing the illumination at a point from many complex sources
including area lights, sun/sky models, high-dynamic range (HDR)
environment maps and indirect illumination. This is effectively
solving the rendering equation at a point x:

L(x,ω) =
∫

Ω

fr(x,ω,ω ′)L(x,ω ′)dω
′
⊥ (1)

where L is the radiance, ω is viewing direction, fr is the BRDF, and
Ω is the sphere of directions. By approximating the light sources as
many point lights, Lightcuts discretizes this integral into the sum:

L j = ∑
i∈L

M jiG jiV jiIi (2)

The point j is being illuminated by the set of point lights L.
The contribution of each light i is the product of a material term,
M ji = fr cosθ , a geometric term G ji that includes the lights emis-
sion distribution and distance, the visibility V ji between the point
and the light, and the light’s intensity Ii. For simplicity, these are
written as scalars, but may also represent RGB or spectral values.
Accurate approximations often require very large light sets L and
Lightcuts provides a scalable solution for such cases. It organizes
the lights into a light tree hierarchy and then adaptively selects cuts
in the tree that partition the lights into clusters based on a percep-
tual metric and conservative bounds on the error in estimating the
contribution of a cluster. Clusters are approximated by selecting
and evaluating a representative light from the cluster.
An extension called reconstruction cuts exploits image coherence
but only in regions which are sufficiently similar in material, ori-
entation, and local occlusion. These are difficult to extend to more
complex rendering problems and thus will not be considered here.
Lightcuts is very effective at handling high illumination complex-
ity at a single point, but in this paper we will look at the larger
problem of computing complex illumination integrated over entire
pixels domains. We describe how to extend the following key con-
cepts from Lightcuts for solving these larger problems: point-based
discretization of the integral domain, point hierarchy and clustering,
cut selection via conservative error bounds and a perceptual metric,
and representative-based cluster approximation.

3 Multidimensional Lightcuts
Effects such as temporal blur, depth of field, volumetric effects and
anti-aliasing can be expressed as integrals over multiple dimensions
or domains [Cook et al. 1984]. For example, we may want to inte-
grate over time, volume, camera aperture, and image plane:

pixel =
∫

time

∫
volume

∫
aperture

∫
pixel area

L(x,ω) (3)

Multidimensional Lightcuts, Walter et. al., To appear SIGGRAPH 2006. 3

We could discretize the pixel integral into a set of points, evaluate
the radiance L at each point, and sum the radiances to approximate
such complex integrals. This approach has been used by many pre-
vious methods including supersampling and bidirectional path trac-
ing. The problem is that a large number of points are often required
for good approximations, which quickly becomes very expensive
especially when the illumination is also complex.
Multidimensional lightcuts is a unified scalable point-based ap-
proach for rapidly and accurately approximating such multidimen-
sional integrals. It provides an efficient and accurate algorithm for
estimating the contribution from large point sets.
Multidimensional lightcuts first discretizes the illumination sources
into a set of point lights L, using the techniques of Lightcuts [Walter
et al. 2005]. Then for each pixel it generates a set of gather points
G, by tracing rays from the eye or camera. The total pixel value is:

pixel = ∑
(j,i)∈G×L

L ji (4)

= ∑
(j,i)∈G×L

S jM jiG jiV jiτ jiIi (5)

where, the M, G, V , and I terms are the material, geometry, visibil-
ity and intensity terms as in Equation 2, and:

• S j is the strength of a gather point. We normalize the material
term so that it integrates to one over direction space. Thus
the strength gives the relative weight of each gather point in
the integral. The sum of the strengths of all the gather points
equals the average albedo over the pixel and is thus ≤ 1.

• τ ji is a binary variable that checks if points i and j exist at the
same time instant to ensure that we only evaluate interactions
between points that exist at the same instant of time.

Directly evaluating all pair-wise interactions (g, l), where g is a
gather point in G, and l is a light point in L, requires |G||L| compu-
tations, which is prohibitively expensive. Instead, we apply adap-
tive estimation techniques like those used in Lightcuts. However,
even explicitly constructing a hierarchy over the (g, l) pairs would
require O(|G||L|) work for each pixel, which is too expensive.

3.1 The Product Graph

We use an implicit construction of a hierarchy over the space of
gather-light pairs. We first construct separate hierarchies over the
gather points and the light points: the gather tree and light tree,
respectively. Each node of these trees represents a cluster of all the
gather or light points beneath them. The Cartesian product graph
of the gather tree and light tree: P = Tree(G)×Tree(L), is then an
implicit hierarchy on the set of all gather-light pairs, as illustrated in
Figure 2. The root node of the product graph corresponds to the set
of all gather-light pairs (pairing of the gather and light tree roots)
while leaf nodes correspond to individual gather-light pairs (pairing
of leaf nodes from the gather and light trees). Two nodes in the
product graph have a parent-child connection if they correspond to
the same node in one tree (gather or light) and to parent-child nodes
in the other tree. Note that the product graph itself is not a tree as
there can be multiple different paths from the root to a single leaf.
This implicit construction allows us to compute using a hierarchy
of gather-light pairs without actually having to explicitly construct
the full hierarchy. Instead, only the two, much smaller, gather and
light trees are required. We denote a node in the product graph
representing a cluster of gather-light pairs as C.

3.2 Cuts in the Product Graph

Next we extend the notion of a cut to apply to our product graphs. A
cut partitions the set of gather-light pairs into clusters and the goal

G0

G1

G2

L0 L3L2L1 L5L4 L6

G2

G1G0

Gather Tree

L6

L4 L5

L1L0 L2 L3

Light Tree

Product Graph

World Space

L0 L1 L2 L3

pixel

eye

G0
G1

Figure 2: Product graph. Top left: scene with two gather points and
four light points. Top right: gather and light cluster trees. Bottom:
product graph of gather tree and light tree. Each product graph node
corresponds to the pairing of a gather and light node and represents
all pairwise interactions between points in their respective clusters.
The light green node is the source/root, and the dark blue nodes are
sinks/leaves in the product graph.

is to adaptively select a cut that will result in an accurate approxi-
mation of the pixel. In analogy with Lightcuts, we define a cut in
the product graph as a set of nodes such that, for any leaf node, the
set of all paths from the root to that leaf node will contain exactly
one node from the cut. Thus every gather-light pair will be included
in one and only one cluster on the cut.
We approximate the contribution of an individual cluster C by using
a representative gather-light pair (g, l) as follows:

L̃C = MglGglVgl ∑
(j,i)∈C

S jτ jiIi (6)

where the material, geometry, and visibility terms are evaluated at
the representative (g, l). Note that we also require that g and l must
exist at the same time instant; otherwise the estimate is ill-defined.
Representative selection will be discussed in the next section.
To explain how to efficiently compute the sum in Equation 6, we
need new notation. In our system, we discretize time into a fixed
set of T time instants for any frame. Vectors of values over the time
instants will be denoted with arrows like~V . Using unit time vectors,
êk, we can express the k-th element of a time vector as ~V · êk. We
can then represent all the strengths S and intensities I of the gather
and light points as time vectors. For example, if light i exists at the
second of four time instants and has intensity 5 then~Ii = (0,5,0,0).
The sum can then be computed using a dot product of time vectors:

L̃C = MglGglVgl(~SC ·~IC) (7)

where~SC is equal to the sum of the strength vectors for all the gather
points in the cluster, which can be precomputed and stored in the
gather tree. Similarly ~IC is the sum of the intensity vectors of the
lights in the cluster and is cached in the light tree.

3.3 Representatives in the Product Graph

We can make the cluster approximation unbiased, in a Monte Carlo
sense, by choosing cluster representative pair (g, l) ∈ C according
to the probability:

pC(g, l) =
(~Sg ·~Il)

(~SC ·~IC)
(8)

To make cluster representative finding efficient, we split this prob-

Multidimensional Lightcuts, Walter et. al., To appear SIGGRAPH 2006. 4

G0

G2

G1G0

Gather Tree

L6

L5

L2 L3

Light Tree

L0 L2
pixel

eye

G0

Points at time instant t0

L1 L3
pixel

eye

G1

Points at time instant t1

G0 G1

G1

L0

L4

L1L0 L1 L3L2

L1 L2 L3

L2 L1

t0 t1

L0

Figure 3: Multiple representatives for product graph with two time
instants. Blue elements show the cached representatives for time t0
and yellow elements show the representatives for time t1

ability into three components as follows:

pC(g, l) = pC(t) pC(g|t) pC(l|t) (9)

pC(t) =
(~SC · êt)(~IC · êt)

(~SC ·~IC)
(10)

pC(g | t) =
(~Sg · êt)

(~SC · êt)
(11)

pC(l | t) =
(~Il · êt)
(~IC · êt)

(12)

where we first pick a time instant t and then select representative
gather and light points based on this time instant. This method has
several advantages. It guarantees that we will only pick represen-
tative pairs (g, l) that exist at the same time instant. Also since
pC(g|t) depends only on the gather points, the gather representa-
tives for each time instant can be selected during the gather tree
construction and cached for fast lookup. Similarly pC(l|t) depends
only on the light points and its representatives can be cached in the
light tree. Thus each node in the gather and light trees stores a
vector of T representatives. An example is shown in Figure 3.
Storing multiple representatives per node is also useful even when
not including time (T = 1). Randomly choosing from a preselected
list of representatives (e.g., 32 per cluster) creates a better distribu-
tion of shadow rays for cluster estimation as compared to always
using the same representative for a gather or light cluster.
Representative sharing. As in Lightcuts, we can make the cut se-
lection process more efficient by ensuring that parents always share
each representative with one of their children. This allows the ma-
terial, geometric, and visibility results for that representative to be
reused during the cut refinement process. We enforce this during
tree construction by always selecting the representative for a parent
at time instant t from the representatives of its two children for t.
This is done in both the gather and light trees.

3.4 Algorithm Overview

We are now ready to summarize the multidimensional lightcuts al-
gorithm. First in a preprocess, discretize time into T instants, gen-
erate the light set L and build the light tree. Then for each pixel,
perform the following. Trace rays from the eye or camera to gener-
ate the gather points G and build the gather tree. Initialize the cut
with a coarse cut (e.g., the root node of the product graph). Then
iteratively refine the cut:

1. Select the node in the cut with the largest error bound. If this
error bound is less than the perceptual error threshold (Equa-
tion 15), terminate refinement.

2. Otherwise refine the node by removing it from the cut and re-
placing it with two of its children. This can be done by moving
down one step in either the gather or light tree. The choice is
made using the refinement heuristic from Appendix A.

3. Compute the cluster estimates (Equation 7) for new nodes and
update the current overall pixel estimate. One child will share
the parent’s representative and reuse the same time instant and
representative M, G, and V terms from its parent. The other
child will randomly select a new time instant and representa-
tive pair from the cached lists in the trees.

4. Compute the conservative error bounds (Equation 13) for each
of the two new nodes. Goto step 1.

For example in Figure 3, the cut might start with the root node
(G2,L6) with representative (G1,L1) at time t1. If light tree refine-
ment was chosen we would replace it in the cut with (G2,L4) and
(G2,L5). In this case (G2,L4) would reuse its parent’s represen-
tative (G1,L1) while (G2,L5) would pick a new time instant and
representative such as (G0,L2) at t0. And the process would repeat.
Light Tree Generation. The light points and tree are constructed
once per frame as a preprocess. The light sources in the scene such
as area lights, sun/sky models, and HDR environment maps are first
approximated using point lights. Next we emit light particles from
the lights and record their hit locations. These locations are con-
verted into virtual point lights that simulate indirect illumination.
Finally the point lights are organized into a light tree. We use the
same light types (omni, oriented, and directional) and same light
tree building process as Lightcuts. However to support participating
media we also allow particles to scatter in the volume and generate
volume indirect lights. In our initial implementation with uniform
phase functions, the volume lights are omni lights that are subject
to clamping just like other indirect lights.
Each node in the light tree records its spatial bounding box, a
bounding direction cone (if it contains oriented lights), an array
with its representative for each time instant, and its intensity (as a
time vector), which is simply the sum of the intensity vectors from
its children. Storing the intensity and representative vectors is our
largest memory overhead, but most nodes are low in the tree and
have very sparse vectors that can easily be compressed.
Gather Tree Generation. For each pixel, we trace eye rays from
the camera to generate a new set of gather points. Depending on
the scene each eye ray may generate zero, one, or multiple gather
points. We support both volume and surface gather points. Vol-
ume points record the local phase function, which is always uniform
currently. Surface points record the local normal and bidirectional
reflectance distribution function (BRDF). We currently support the
same BRDF types as Lightcuts [Walter et al. 2005], namely diffuse,
phong, Ward, and specular materials.
Because the gather tree must be rebuilt for each pixel, its construc-
tion must be fast. We use a simple top-down kd-tree construction
instead of the greedy bottom-up construction used for light trees.
During construction we map each gather point to a point in a 6D
space and then iteratively split the points along the longest axis of
their 6D bounding boxes until each cell contains no more than two
points, thus creating a binary gather tree.
Points are grouped based on spatial and directional similarity (tem-
poral similarity is not currently considered). The 6D coordinates
used are the gather point’s three spatial coordinates plus three co-
ordinates based on the directionality of its material. Diffuse points
map to points on the unit sphere based on the local surface nor-
mal, glossy surfaces map to vectors in their reflection direction with
lengths between one and four based on the sharpness of the gloss.
Volume points map to the directional origin. These directional coor-
dinates are then scaled by 1/8 the diagonal of the scene’s bounding
box before kd-tree construction.

Multidimensional Lightcuts, Walter et. al., To appear SIGGRAPH 2006. 5

Similar to light nodes, each node in the gather tree records its spa-
tial bounding box, a normal bounding cone (if it contains diffuse
materials), a bounding cube-map (if it contains glossy surfaces), an
array giving its representative for each time instant, and its strength
(as a time vector), which is the sum of the strength vectors from its
children. We will discuss the normal cone and cube-map next.

3.5 Error Bounds

The cluster error bounds are upper bounds on the maximum error
that can be introduced by approximating a cluster using its repre-
sentative pair (Equation 7) and is computed as:∥∥L̃C−LC

∥∥ ≤ Mu
C Gu

CV u
C (~SC ·~IC) (13)

where Mu
C, Gu

C, and V u
C are upper bounds on the material, geomet-

ric, and visibility terms over all the gather-light pairs in cluster C.
For visibility we use the trivial upper bound of one. If the clus-
ter only contains one gather point, then we directly use the upper
bounds from Lightcuts since this is the case they considered and
we support the same material and light types. However we need
additional techniques to bound clusters with multiple gather points.
Given bounding boxes for the gather and light cluster, we can col-
lapse the problem of bounding the interactions between two boxes
into the simpler problem of point to box bounding using Minkowski
sums. Given a set of point pairs (xi,yi), we can translate each pair
by −xi to get (o,yi − xi) where o is the origin. Given bounding
boxes on xi and yi it is easy to compute a bounding box for yi −xi.
We can then evaluate the existing G bounds for this larger box.
Bounding M is more difficult because the gather points in a cluster
may have different materials. Computing bounds for each point
in a cluster individually would be expensive, instead we create a
combined material bounding function. We split the materials into
diffuse and glossy components which are bounded separately. We
bound the diffuse component by keeping track of a bounding cone
of all the point’s surface normals in the cluster. This is very similar
to the G bounding for clusters of oriented lights in Lightcuts.
Gloss components are more difficult because they depend on the
local material properties, surface normal, and incident direction of
the eye ray. Our solution is to discretize direction space using a
cube-map decomposition. We use a 6x6 subdivision on each cube
face for a total of 216 directional cells in the cube map. For each
glossy gather point we build a cube map that stores its maximum
material value over the set of directions corresponding to that cell.
This is easily computed using the material bounds from Lightcuts.
Once converted to a cube map, we can compute the gloss bounding
function over multiple points by taking the maximum value from
the corresponding cells and storing it in another cube-map. To
bound the maximum M value for a cluster, we project its bound-
ing box onto the cube-map and take the maximum of the cells it
touches. The cube-map has the advantage of being very general and
easy to work with, but the disadvantage of limited resolution and
being somewhat expensive to initialize for a gather point. Adaptive
techniques, such as quadtrees or wavelets, would improve this.
Using the diffuse normal cones and gloss cube maps allows us to
combine points which different material terms and quickly compute
upper bounds on their material terms. Initially we used the cube
maps for both diffuse and glossy components, but splitting them
gave tighter bounds.
Indirect illumination and clamping. Our system is built on Light-
cuts and uses the same Instant Radiosity [Keller 1997] approach for
indirect illumination, which does not include caustics and requires
some clamping to avoid objectionable noise artifacts.
The indirect clamping had to be modified to work with multiple
gather points. The clamping threshold in Lightcuts is chosen such

that no indirect light can contribute more than a fixed percentage
(e.g., 1%) of the total illumination. This works well for a sin-
gle gather point, but becomes problematic when there are multiple
gather points. For example, an indirect light could contribute 0.1%
to each of a hundred gather points for a total of 10% which would
cause visible noise. Instead, we clamp the product of the material
and geometric terms (e.g., M jiG ji in Equations 5 or 7) for indirect
lights by enforcing:

MG ≤ La

N ‖Ii‖
(14)

where La is the adaptation luminance for the image, N is a constant,
and Ii is the intensity of an individual indirect light. The indirect
light generation process is designed such that all indirect lights have
the same intensity. This guarantees that the maximum contribution
of an indirect light to a pixel over all gather points will be ≤ La/N.
This is easily shown because the sum of the strengths of the gather
points for a pixel is equal to the average albedo over the pixel and
hence ≤ 1 and the visibility term is also ≤ 1.
This metric requires knowing the adaption luminance for the image.
La is typically computed as the geometric mean of the luminances
in the image which can be estimated from a reduced size image
(e.g., 32x24 pixels) computed as a preprocess or it can be specified
by the user. We use N = 200 in our examples.
Perceptual threshold. Once an adaption luminance is known, it
can also be used to modify the perceptual error criteria used to ter-
minate cut refinement. Instead of requiring that each cluster error
be less than r L̃pixel , we require it be less than:∥∥L̃C−LC

∥∥ < r
(
L̃pixel + La/10

)
(15)

where r is a constant (2% in our results) and L̃pixel is the estimated
total for the current pixel. The factor of La/10 was estimated from
the perceptual threshold vs. intensity plots for fixed adaption level
in [Irawan et al. 2005]. This metric more accurately models our
ability to perceive error in darker image regions and reduces unnec-
essary computation in these regions.

4 Applications
Multidimensional lightcuts are applicable to a wide range of render-
ing problems. In our implementation we demonstrate its effective-
ness for temporal anti-aliasing, spatial anti-aliasing, camera depth
of field, specular surfaces, and volume rendering.
Spatial anti-aliasing traces multiple eye rays spread over a pixel’s
area on the image plane. We currently use box filtering, but other
filters such as Gaussian are easily supported.
Specular materials such as mirrors and glass are handled by trac-
ing reflection and refraction rays whenever an eye ray hits them.
Each specular ray then generates a new gather point.
Depth of field models cameras with non-zero apertures instead of
the idealized pinhole cameras usually used in graphics. We im-
plemented a thin-lens camera model where eye rays are distributed
over the aperture and focused on a plane in front of the camera.
Objects not on the focus plane are blurred, or out-of-focus. A large
number of eye rays are required for good quality depth of field.
Temporal anti-aliasing requires handling both visibility and shad-
ing changes as objects, light sources, and cameras can all move or
change over the frame time. We first discretize the frame interval
into T time instants (using a truncated Gaussian distribution in our
current system). Then we distribute the eye rays across these time
instants with one eye ray per pixel per time instant in our examples.
Our system handles multiple times correctly, preventing bleeding
of light across different time instants. Good temporal anti-aliasing
generally requires using many time instants per frame.

Multidimensional Lightcuts, Walter et. al., To appear SIGGRAPH 2006. 6

Tableau (Depth of Field) Kitchen (Participating Media)
Model Polygons Light Per Pixel Averages Light Build Image

Points Eye Rays Gather Points Gather-Light Pairs Cut Size Total Rays Preprocess Time
Tableau 630843 13000 256 180 234 000 447 721 1.8s 702s
Roulette 151752 23000 256 306 7 047 430 174 581 2.4s 590s
Kitchen 388552 55189 32 100 5 518 900 936 969 7.4s 705s
Temple 2124003 94168 256 1282 114 149 280 821 1077 9.8s 1740s

Figure 4: Results for 640x480 images of our four scenes. The polygon and point light counts are shown for each scene. We also give per
pixel averages for the number of eye rays and gather points. This results in a very large number of gather-light pairs that potentially need to
be evaluated per pixel. Cut size is the number of pairs that we actually evaluated to compute each pixel and is far smaller with our scalable
algorithm. We also show the total number rays used per pixel which includes eye, specular, and shadow rays. Lastly we give the preprocess
time to build the light tree and the time to generate each image after the preprocessing. See Figure 1 for roulette and temple images.

Participating media causes absorption and scattering along the
length of the rays as well as at surfaces. We modified our particle
and eye rays to include volume attenuation and generate volume
scattering events based on the density of the media. The light tree
can thus include volume indirect lights to account for out-scatter,
while we generate volume gather points along the eye rays to ac-
count for in-scatter. The spacing of the volume scattering events
is proportional to the density of the media such that all the volume
gather points have equal strength.
Our implementation currently supports uniform media and a uni-
form scattering phase function, though extensions to other densities
and phase functions are possible. We include bounds on the min-
imum attenuation when computing cluster error bounds based on
the minimum distance between the gather and light point’s bound-
ing boxes. If the volume density is low or its extent is small then
the trivial upper bound of one works reasonably well.

5 Results

In this section we present results from our initial multidimensional
lightcuts implementation for four scenes with different effects. All
times are for a dual processor workstation with 3.8 GHz Xeon pro-
cessors. All the code is in Java, and relatively unoptimized, except
for the ray-geometry intersection testing which is written in C++.
Results are for 640x480 images with a 2% error threshold and a
maximum cut size of 2000. Statistics for each scene are given in
Figure 4 and animations are shown in the accompanying video.
Depth of field. The tableau image demonstrates depth of field us-
ing a thin lens camera focused on the coyote figure and an f-stop of
16. We used 256 eye rays per pixel distributed over the camera’s
aperture for depth of field and spatial anti-aliasing. The scene con-
tains several complex objects with different glossy materials. It is

lit by an HDR environment map (the Kitchen map from [Debevec
2002]) and indirect illumination simulated using 3000 directional
and 10000 indirect point lights respectively.
Tableau uses an average of 180 gather points per pixel (some eye
rays did not hit any geometry) generating 234,000 gather-light pairs
which potentially contribute to a pixel. Our technique evaluated an
average of only 447 pairs per pixel, allowing us to rapidly compute
a high quality anti-aliased image with depth of field.
Motion blur. The roulette scene demonstrates temporal anti-
aliasing. The inner part of the wheel is rotating while the outer part
is stationary. Images without motion and with slower motion are
shown in Figure 5. The wheel contains complex geometry includ-
ing 38 numbered bins with mirror-like metallic dividers. The scene
is lit by an HDR environment map (the Uffizi map) and indirect illu-
mination using 3000 directional and 20000 indirect lights. We used
256 time instants and 256 eye rays per pixel for this image to handle
motion blur in reflections as well as in primary visibility and shad-
ing. Reflections of stationary objects like the HDR map correctly
remain sharp while reflections of moving objects are blurred. You
can also see a reflection of the central handle reflected in the tops
of the spinning metallic dividers. These effects can be seen more
clearly in the accompanying video.
Participating media. The kitchen scene demonstrates volume ef-
fects from participating media, including occlusion and multiple
scattering. The kitchen is filled with light smoke or haze and lit
by a sun/sky model, twenty interior lights, and indirect illumination
using 2129, 2560, and 50000 point lights respectively. We used 32
rays per pixel for spatial anti-aliasing and an average of 68 volume
gather points per pixel to capture inscatter along eye rays. This cre-
ates over 5 million potential gather-light pairs to be checked, but an
average of only 936 pairs per pixel are evaluated to capture complex
volume effects like the light shafts from the sun.

Multidimensional Lightcuts, Walter et. al., To appear SIGGRAPH 2006. 7

Slower Stationary

Figure 5: Roulette wheel with slower motion and stationary.

Combined effects. The temple scene is our most complex scene,
with over 2 million polygons. It includes both participating media
and temporal anti-aliasing with both moving camera and moving
light sources. The scene simulates a foggy night and is lit by a sky
model, 5 interior lights, 150 small moving volume lights meant to
be luminous fireflies or faeries, and indirect illumination. Volume
lights are simulated as moving omni lights with a modified falloff
function. We used 256 time instants and 256 eye rays per pixel
for temporal and spatial anti-aliasing. We also used an average of
1026 volume gather points per pixel to capture the volume in-scatter
including the inscatter from the small moving lights. This creates
over a hundred million potential gather light pairs per pixel, but we
only needed to evaluate an average of 821 pairs per pixel.
Although the temple scene is much more complex, with many more
polygons, light points, and gather points, its cost only increases by
a factor of two to three over the other scenes due to our scalable
algorithm. Figure 6 shows the pixel cut sizes for the roulette and
temple scenes as false color images.
Scalability. To demonstrate how our algorithm scales with increas-
ing numbers of gather points, we plot cut sizes and image times
for the roulette scene with varying numbers of eye rays per pixel
in Figure 7. Multidimensional lightcuts is compared to two other
methods. The first is the original Lightcuts algorithm (without re-
construction cuts), which computes an independent lightcut at each
gather point. Unified cut is a simplified version of our algorithm
which does not use gather clusters or a gather tree. Instead, it com-
putes a cut for each individual gather point, but considers them as
part of a unified cut for refinement and termination purposes.
The cut size results show dramatically better scaling for our algo-
rithm with increasing gather points. Adding more gather points has
only a small effect on cut size once we include gather clusters and
the gather tree, whereas cut size increases much faster in methods
without gather clusters. Image time scaling is also much better for
our algorithm though not quite as flat as the cut size curve. However
by plotting the time to just trace the eye rays without any shading,
we can see that most of the added time is due to the cost of eye
rays; actual shading costs increase very slowly. The time increased
by only a factor of 11 when going from 1 to 256 eye rays per pixel,
and if we exclude the time to trace the eye rays, then the shading

Roulette Cut Size Temple Cut Size

Figure 6: False color images showing the cut sizes per pixel for the
roulette and temple scenes from Figures 1 and 4.

Cut size vs. Gather points

0

600

1200

1800

2400

3000

0 50 100 150 200 250 300
Gather points (avg per pixel)

C
ut

 s
iz

e
(a

vg
 p

er
 p

ix
el

)

Multidimensional
Unified cut
Original lightcuts

Image time vs. Gather points

0

400

800

1200

1600

0 50 100 150 200 250 300

Gather points (avg per pixel)

Im
ag

e
tim

e
(s

ec
s)

Multidimensional
Unified cut
Original lightcuts
Eye rays only

Figure 7: Variation in cut size and image time with the number
of gather points for three algorithms. Multidimensional lightcuts
greatly reduces the cost of shading multiple gather points per pixel.

cost increased by only a factor of 6.7—much smaller than the 256
times increase in shading points required to capture the effect.
We also show a side-by-side comparison of our result to an image
computed using the Metropolis algorithm[Veach and Guibas 1997].
The images are visually very similar. The main differences are
that the Metropolis result still has some residual visual noise, even
though it took 15 times longer to compute than our result, and it
is slightly brighter (about 5% on average) because it includes some
indirect paths that cannot be handled by the Instant Radiosity-style
indirect approximation used in our system (e.g., caustic paths).

6 Conclusions

Multidimensional lightcuts is a scalable rendering technique for
rich visual effects such as motion blur, participating media, depth of
field and spatial anti-aliasing in scenes with complex illumination.
It unifies handling of these effects by discretizing the rendering in-
tegrals into many gather-light pairs and then accurately approximat-
ing their total contribution using only a tiny fraction of the pairs.
We use an implicit hierarchy, the product graph, on the gather-light
pairs and adaptively partition them into clusters based on conserva-
tive cluster error bounds and a perceptual metric. This allows us to
accurately estimate the total integral while cheaply approximating
the individual clusters, and allows us to scale to very large numbers
of gather-light pairs (hundreds of millions per pixel). For example,

Our result Metropolis (15× longer time)

Figure 8: Comparison of our result with a result computed using
Metropolis. The images are very similar, but Metropolis takes 15
times longer and still has residual noise [see inset zoom].

Multidimensional Lightcuts, Walter et. al., To appear SIGGRAPH 2006. 8

we increased the sampling rate in a complex scene by 256x while
only increasing the shading cost by less than 7x.
We have also shown that multidimensional lightcuts can be much
faster than alternative Monte Carlo methods that are typically used
for complex scenes and effects, and computes images that are visu-
ally good approximations of the exact solutions.
Future Work. There are many areas of future research worth ex-
ploring. Our technique uses conservative error bounds, thus devel-
oping good bounds for more types of functions will let us handle
a wider range of lights, materials, scattering functions, and volume
densities. More sophisticated perceptual error metrics, beyond We-
ber’s law, could further reduce cut sizes. Adaptive or on-the-fly
generation of gather and light points could reduce the initial num-
ber of points we need to generate and further improve robustness.
Gather points could be used to solve more rendering effects, such as
using additional gather points to automatically compensate for the
bias introduced by indirect clamping. Also complementary tech-
niques could be integrated for the indirect paths not currently han-
dled, such as caustics.

Acknowledgments
We would like to thank Jeremiah Fairbanks (kitchen), Veronica Sundstedt,
Patrick Ledda, and the Graphics Group at University of Bristol (temple) for
allowing us to use their models. This work was supported by NSF grants
ACI-0205438, CCF-0539996, and Intel Corporation.

References

BEKAERT, P., SBERT, M., AND HALTON, J. 2002. Accelerating path
tracing by re-using paths. In EGRW ’02, 125–134.

BURKE, D., GHOSH, A., AND HEIDRICH, W. 2005. Bidirectional impor-
tance sampling for direct illumination. In EGSR ’05, 147–156.

CAMMARANO, M., AND JENSEN, H. 2002. Time dependent photon map-
ping. In EGRW ’02, 135–144.

CATMULL, E. 1984. An analytic visible surface algorithm for independent
pixel processing. In SIGGRAPH ’84, 109–115.

CEREZO, E., PEREZ-CAZORLA, F., PUEYO, X., SERON, F., AND SIL-
LION, F. 2005. A survey on participating media rendering techniques.
The Visual Computer 21, 5, 303–328.

CLARBERG, P., JAROSZ, W., AKENINE-MÖLLER, T., AND JENSEN,
H. W. 2005. Wavelet importance sampling: efficiently evaluating prod-
ucts of complex functions. ACM Transactions on Graphics 24, 3, 1166–
1175.

CLINE, D., TALBOT, J., AND EGBERT, P. 2005. Energy redistribution path
tracing. ACM Transactions on Graphics 24, 3, 1186–1195.

COOK, R. L., PORTER, T., AND CARPENTER, L. 1984. Distributed ray
tracing. In SIGGRAPH ’84, 137–145.

COOK, R. L., CARPENTER, L., AND CATMULL, E. 1987. The Reyes
image rendering architecture. In SIGGRAPH ’87, 95–102.

DAMEZ, C., DMITRIEV, K., AND MYSZKOWSKI, K. 2003. State of the
art in global illumination for interactive applications and high-quality
animations antialiasing. Computer Graphics Forum 22, 1, 55–77.

DEBEVEC, P. 2002. Image-based lighting. IEEE Computer Graphics &
Applications 22, 2 (March-April), 26–34.

HAVRAN, V., DAMEZ, C., MYSZKOWSKI, K., AND SEIDEL, H.-P. 2003.
An efficient spatio-temporal architecture for animation rendering. In
EGSR ’03, 106–117.

IRAWAN, P., FERWERDA, J. A., AND MARSCHNER, S. R. 2005. Per-
ceptually based tone mapping of high dynamic range image streams. In
EGSR’05, 231–242.

JENSEN, H. W., AND CHRISTENSEN, P. H. 1998. Efficient simulation of
light transport in scenes with participating media using photon maps. In
SIGGRAPH ’98, 311–320.

KELLER, A. 1997. Instant radiosity. In SIGGRAPH ’97, 49–56.
KOREIN, J., AND BADLER, N. 1983. Temporal anti-aliasing in computer

generated animation. In SIGGRAPH ’83, 377–388.

LAFORTUNE, E. P., AND WILLEMS, Y. D. 1993. Bi-directional path
tracing. In Compugraphics ’93, 145–153.

LAWRENCE, J., RUSINKIEWICZ, S., AND RAMAMOORTHI, R. 2004. Effi-
cient BRDF importance sampling using a factored representation. ACM
Trans. Graph. 23, 3, 496–505.

LAWRENCE, J., RUSINKIEWICZ, S., AND RAMAMOORTHI, R. 2005.
Adaptive numerical cumulative distribution functions for efficient im-
portance sampling. In EGSR ’05, 11–20.

MAX, N. L., AND LERNER, D. M. 1985. A two-and-a-half-d motion-blur
algorithm. In SIGGRAPH ’85, 85–93.

MITCHELL, D. P. 1991. Spectrally optimal sampling for distributed ray
tracing. In SIGGRAPH ’91, 157–164.

MYSZKOWSKI, K., ROKITA, P., AND TAWARA, T. 2000. Perception-
based fast rendering and antialiasing of walkthrough sequences. IEEE
Transactions on Visualization and Computer Graphics 6, 4, 360–379.

MYSZKOWSKI, K., TAWARA, T., AKAMINE, H., AND SEIDEL, H.-P.
2001. Perception-guided global illumination solution for animation ren-
dering. In SIGGRAPH ’01, 221–230.

PAULY, M., KOLLIG, T., AND KELLER, A. 2000. Metropolis light trans-
port for participating media. In EGRW ’02, 11–22.

PREMOZE, S., ASHIKHMIN, M., RAMAMOORTHI, R., AND NAYAR, S.
2004. Practical rendering of multiple scattering effects in participating
media. In EGSR ’04, 52–63.

SUN, B., RAMAMOORTHI, R., NARASIMHAN, S. G., AND NAYAR, S. K.
2005. A practical analytic single scattering model for real time rendering.
ACM Transactions on Graphics 24, 3, 1040–1049.

SUNG, K., PEARCE, A., AND WANG, C. 2002. Spatial-temporal antialias-
ing. IEEE Transactions on Visualization and Computer Graphics 8, 2,
144–153.

TALBOT, J., CLINE, D., AND EGBERT, P. 2005. Importance resampling
for global illumination. In EGSR ’05, 139–146.

TAWARA, T., MYSZKOWSKI, K., AND SEIDEL, H.-P. 2004. Exploiting
temporal coherence in final gathering for dynamic scenes. In Proceed-
ings of the Computer Graphics International, 110–119.

VEACH, E., AND GUIBAS, L. J. 1997. Metropolis light transport. In
SIGGRAPH ’97, 65–76.

WALTER, B., FERNANDEZ, S., ARBREE, A., BALA, K., DONIKIAN, M.,
AND GREENBERG, D. P. 2005. Lightcuts: A scalable approach to illu-
mination. ACM Transactions on Graphics 24, 3 (Aug.), 1098–1107.

WLOKA, M. M., AND ZELEZNIK, R. C. 1996. Interactive real-time motion
blur. The Visual Computer 12, 6, 283–295.

A Refinement heuristic
When refining a node in the cut, a refinement heuristic is used to choose
between gather and light tree refinement; this heuristic consists of several
different components. If the gather and light bounding boxes overlap, then
the node with the larger bounding box is refined. Otherwise we try to guess
which refinement type will shrink the material Mu and geometric Gu error
bounds the fastest by estimating the minimum possible Mu and Gu through
gather or light refinement alone. This is computed during the process of
computing the M and G bounds for the cluster.

The material term consists of a diffuse and glossy term. We estimate
the largest possible reduction in the diffuse material term by estimating
the decrease in angular size of the clusters: for gather refinement we use
cos(θcone) dg/dmin and for light refinement we use dl/dmin, where θcone is
the half angle of the normal bounding cone for the gather node, dg and dl
are the diagonals of the gather and light bounding boxes, and dmin is the
minimum distance between the bounding boxes.

Similar rationales are used in bounding the gloss term using the cube map,
and the cosine in the geometric term. Putting all the estimates together gives
a crude but cheap estimate of how much either gather or light refinement
could reduce Mu and Gu and we choose the one with the greatest estimated
reduction in error bounds. However, long sequences of only one refinement
type are usually undesirable, so we also add a small term to favor the other
refinement type after repeated sequences of only one refinement type.

