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� Introduction

Ray casting has become a fundamental step in many graphics algorithms es�
pecially in the area of global illumination� Examples include using rays to
calculate form factors for traditional radiosity� track energy in particle tracing�
and trace possible transport paths in path tracing� The appeal of ray casting is
that it o�ers a 
exible and intuitive way to query visibility within a scene and
we expect that its popularity will continue to grow� However ray casting can
be an expensive operation and it is often the single most expensive part of an
algorithm� Thus it is important to study the costs of ray casting both to �nd
ways to minimize its cost and to enable the cost analysis of algorithms which
utilize ray casting�

Unfortunately the complexity of ray casting is not very well understood� A
variety of acceleration schemes have been proposed by researchers� but there
has been relatively little analysis of these schemes� Currently we have no �a
priori� assurance about what the actual cost of these schemes will be in real
world use� Ray casting studies have provided useful heuristics about the costs
of various schemes� however to our knowledge all fall short of completeness in
one of the following ways�

� Analyzed impractical methods� Only methods which are used and are
competetive are of interest�

� Used assumptions which are usually violated in practice� They may be
good approximations but we cannot be sure�
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A�B Minkowski Sum� A�B � fxjx � a� b� a � A� b � Bg�
A�B Shorthand for A� ��B��
C Set of subdivision cells�
D�A� The average length of A�s projection onto a random line
E�x� The expected value of x�
L�A� The length of a ��D point set A
Mi The multiplicity of oi�
M The total of the multiplicities of all objects�
N The number of objects in O�
Nr The number of rays�
Nc The number of cells in C�
O The set of all objects�
O�f�N�� The set of functions of N that are bounded by kf�N� for

some k � 	 and for allN � N�� whereN� is a some positive
integer�

p�ci� The probability that a random ray will strike cell i
pavg The average probability of a cell
ptot The total probability of all cells� Also the average number

of cells struck by a ray�
p�r� The probability density function for rays
PB�A� The projection of A onto B
RZ the set of all rays that hit point set Z
SA�A� The surface area of a ��D point set A
Tp The preprocessing time to build e�ciency structure�
T� The time to initialize a ray
Ts The time used for ray to step from one cell to another
Th The time used to check if a ray intersects an object
V�A� The the volume of a point set A
ci The ith cell in C
oi The ith object in O
l The side length of a cubical cell
V The bounding volume of subdivision structure
��A�B� Intersect function� one if the two point sets A and B con�

tain at least one point in common and zero otherwise�
� The collusion factor between the distributions of objects

and rays
��ci� Occupancy or the number of objects which intersect cell i
�avg The average occupancy per cell
�tot The total occupancy of all cells

Table �� Symbols and Terms
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� Consisted of empirical studies and thus give no guarantee of future per�
formance�

Our goal in this paper is to provide a more rigorous analysis of a particular
scheme� the uniform spatial subdivision� but we emphasize that much more
work needs to be done in this area�

After some background on ray casting analysis in section �� we de�ne the
collusion factor and �nd a high level cost equation in section �� In sections �
and �� we show how to approximate some of the quantities in our high level
cost equation� Section ��� demonstrates how compute the optimal level of
subdivision and cost in a particular case� We then use our cost equation and
some upper bounds in section � to derive some complexity order results when
the collusion factor is bounded� We include an empirical study in section ���
to illustrate our analysis and to study the collusion factor�

� Background

Ray casting� can be de�ne as� �Given a ray� �nd the object�s� which it inter�
sects��� The easiest and most naive solution is to simply test the ray against
every object in the scene� This is unnecessarily expensive and in practice a
variety of schemes are used to reduce the cost �see ��� for a survey�� Unfor�
tunately their costs are not well understood� its still a matter of debate as to
which scheme is the fastest�

One useful way of comparing algorithms is by expressing the complexity in
�big�oh�� notation� For instance an algorithm whose cost is linear or propor�
tional to the size of its input is O�N�� When using this notation though� we
need to remember though that the complexity order is only an upper bound
�i�e� any algorithm which is O�logN� is also O�N�� and is asymptopic �i�e� only
relevant for su�ciently large problems��

For our analysis let�s de�ne N to be the number of objects or primitives
�e�g� polygons� spline patches� spheres� in a scene� Its easy to show that the
naive ray casting method is O�N�� In the rendering literature there is good
empirical evidence that at least some of the acceleration schemes achieve sub�
linear time complexity �i�e� better than O�N��� but there is a lack of proofs to
show what complexity they actually achieve and under what conditions� In the
computational geometry literature there is a method which has been proven to
be O�logN� by de Berg���� but unfortunately its extreme storage requirements
make it impractical� Thus to the best of our knowledge� the practical complexity

�Some authors make a distinction between ray casting and ray tracing� where the former is
a simple visibility test and the latter involves tracing a ray of light through multiple bounces�
To avoid confusion� we will use the restrictive term ray casting� In the computational geometry
literature the terms ray shooting and stabbing line query are also used�

�Some applications only need the �rst intersection and others need all� We will try to make
our analysis general enough to handle both cases�

�O�f�N�� is the set of all functions of N bounded above �with equality allowed� by the
function kf�N� for some constant k and all N � N �� So if for some k and N �� g�N� � kf�N�
for all N � N � then g�N� � O�f�N���
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of ray casting is unknown� It is believed to be sub�linear and often assumed to
be O�logN�� but except in very specialized cases� the analysis needed to con�rm
this is lacking�

Of all the acceleration schemes� we have choosen to study the uniform spatial
subdivision scheme both because it is amenable to simple analysis techniques
and because some researchers have reported it to be the fastest method in
practice ��	� ��� ��� It is also probably the best analyzed of all the practical
acceleration schemes� Both Cleary and Wyvill ��� and Devillers ��� have derived
cost equations under the assumptions that rays are uniformly distributed and
that objects are randomly placed� Unfortunately these assumption usually are
not valid in practice� Our goal is to show how a cost analysis can be done using
much weaker assumptions�

Most current algorithms introduce randomness into the generation of rays
to reduce aliasing and bias� Hence in principle the exact rays to be cast and
the runtime are non�deterministic� Given this� an expected cost analysis is ap�
pealing both for its relative simplicity and because it is a good �t for many
modern algorithms� This is the approach used by Cleary and Wyvill ���� Dev�
illers ���� and here� The di�culty is that the most straightforward analysis
would require knowledge of the exact probability distribution function for the
rays� Unfortunately in practice this can be an extremely di�cult function to
compute� Previous studies have simply assumed the relatively simple uniform
distribution� Our approach is to de�ne a quantity called the collusion factor
which encapsolates the relevant details of the ray distribution function� We
show that the collusion factor and a few easy to compute statistics are su�cient
to bound the cost� Unfortunately computing the exact the collusion factor is
still a di�cult problem� but we argue that in practice the collusion factor is
frequently well approximated as a small constant�

One of the di�culties in trying to formulate a general analysis of ray casting
is that there is such a wide variety of possible situations� It is easy to construct
adversarial cases which will defeat a particular acceleration scheme� However
most of these cases are not typical of the cases usually encountered in practice�
Thus its important to �nd measures which distinguish the adversarial cases�
In our case we use the collusion factor and some geometric information about
the primitives to this� Thus our cost equation will be given in terms of the
total volume� surface area� and average diameter of the primitives and the col�
lusion factor� Mention something about adversarial cases and the need to have

measures to separate them from most typical scenes

� Expected Time for Ray Casting

We want to �nd a general expression for the cost for ray casting using a uniform
spatial subdivision� To keep the analysis simple we will only analysze it in its
simplest form� Most of the additional optimizations which have been proposed
do not change the basic structure of the analysis�

In the naive method� ray casting is accomplished by simply checking the ray
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Figure �� The line steps through twelve cells and six intersection tests are
performed �two each for the the circle� triangle� and pentagon��

Figure �� The circle occupies six cells so its multiplicity is six� The other three
objects each have a multiplicity of four� so the total multiplicity is eighteen�
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for intersection with every object� The most e�ective acceleration schemes work
by �nding ways to reduce the number of explicit ray�object intersection tests�
The uniform spatial subdivision does this by breaking space up into a regular
array of �cells�� For each cell we keep a list of all the objects which intersect that
cell� When casting a ray we determine which cells the ray passes through and
only check the ray against objects associated with those cells� No intersection
tests are done for objects which do not share a cell with the ray� but multiple
intersection tests may be performed if an object and cell share multiple cells�

In order to formalize this cost we need to introduce a few de�nitions� Let
O � fo�� o�� � � � � oNg be the set of objects which rays might intersect� V be a
bounding volume of the objects� and C � fc�� c�� � � � � cNc

g be the set of cells
which partition V � Then we can write pseudocode for the casting a ray as�

Find �rst cell ci hit by r
while �ci is valid and r has not terminated�

check for intersections of r with objects in ci
�nd next ci hit by r

Let T� be the time to initialize a ray� Th be the time to test an object for
intersection with the ray� and Ts the time to step to the next cell� De�ne the
set intersection function ��A�B� to be � if point sets A and B share at least one
point in common and 	 otherwise� Then we can write the cost of a ray as�

cost�r� � T� �

NcX
i

��r� ci�

�
�Ts � Th

NX
j

��oj � ci�

�
A ���

We can simplify this expression a little by de�ning ��ci�� the occupancy of
a cell� to be the number of objects which intersect it�

��ci� �

NX
j

��oj � ci� ���

We take the expected value of the cost by noting that the expected value of
��r� ci� is just p�ci�� the probability that ci will be struck by a random ray� �An
example of the formally correct way to do this is given in section����� Thus we
can write the expected cost per ray as�

E�cost�r�� � T� �

NcX
i

p�ci�Ts �

NcX
i

p�ci���ci�Th ���

Note that the �rst term is a constant� the second is the cost of stepping through
cells� and the third represents the cost of explicit intersection tests� Any cost
savings will come from decreases in the third term as we increase the number of
cells� However it is possible to create situations where the third term will not
decrease signi�cantly and our cost saving will not materialize� We need to make






a few more de�nitions to help discuss ways in which the acceleration scheme
can fail�

We de�ne the total occupancy and total cell probabilities to be the sum of
all the individual cell occupancies and probabilities� and de�ne their averages
in the usual way�

�tot �

NcX
i

��ci� ���

�avg �
�tot

Nc

���

ptot �

NcX
i

p�ci� �
�

pavg �
ptot
Nc

���

We de�ne �� the collusion factor between the cell occupancies and cell proba�
bilities as�

� �
�

Nc

NcX
i

p�ci�

pavg

��ci�

�avg

���

By noting that all these quantities are positive and that ��ci� � �tot we easily
show the bounds�

	 � � � Nc ���

We can now rewite our expected cost as�

E�cost�r�� � T� � ptotTs � pavg�tot�Th ��	�

We now have the cost expressed in terms of three unknown quantities� the total
occupancy� the total cell probability� and the collusion factor� To complete our
analysis we need to �nd both good approximations and worst case upper bounds
for these quantities� In later sections we will show how to do this for the total
occupancy and cell probability� Unfortunately calculating the collusion factor
is a more di�cult problem and usually requires detailed information about the
exact scene and algorithm being used� In this paper we will argue that in
practice the collusion factor is roughly constant and support this contention
with some empirical studies� Better theoretical calculations of the collusion
factor are left as future work�

��� Total Cost

To evaluate how quickly the third term decreases we need to be able to evaluate�
total occupancy� average cell probabilities� and the collusion factor� In the next
two sections we will show how to calculate good approximations for �tot and
pavg� In general the analysis of �� the collusion factor� is more di�cult and
requires knowledge of the speci�c scene and application being used� However
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we believe that it is usually well behaved in practice and often can be well
approximated as a constant� We will show that this is at least true for some
simple cases and in our examples�

Any complete analysis of the bene�ts of the uniform spatial subdivision must
include Tp � the preprocessing time necessary to build it� Thus if we cast Nr

rays our total cost will be�

totalcost � Tp �NrE�cost�r�� ����

For most of our analysis we will assume that Nr is large enough that the pre�
processing step is not the dominant term in total cost equation� However this
needs to be veri�ed when analyzing a particular application�

� Occupancy and Multiplicity

To help us understand occupancy we need to introduce the related concept
of multiplicity� The multiplicity of an object is the number of cells which it
intersects given by�

Mj �

NcX
i

��ci� oj� ����

The total multiplicity is then the sum of the multiplicities of all objects in a
scene� It is easy to show that the total occupancy is the same as the total
multiplicity�

M �

NX
j

Mj �

NcX
i

NX
j

��ci� oj� � �tot ����

Ideally each object would be contained in exactly one cell �i�e� Mj � ��
and our total occupancy would be just N � Unfortunately objects may lie across
cell boundaries and intersect multiple cells� especially if we use small cells� In
this section we show two ways to calculate the size of this e�ect� First we
�nd the expected value for �tot assuming our objects are randomly placed and
oriented� This result has been used in previous studies and is usually a good
approximation� However real models are usually constructed in a deliberate and
non�random manner� thus the assumption that objects are randomly positioned
is usually a false one� Thus we derive a new result� by �nding a bound on the
total occupancy assuming worst case positioning of the objects�

��� Minkowski Sums

We can use Minkowski Sums � to calculate the average multiplicity of an object�
Given two point sets A and B� we de�ne the Minkowski Sum � by�

A�B � fxjx � a� b� a � A� b � Bg ����

�Minkowski Sums are also referred to as augmented volumes� mixed volumes� mixed sets�
and vector sums �e�g� Cleary and Wyvill ���� Benson ���� Santal	o �
�� and Latombe �����
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Figure �� Some Minkowski Sums

where a� b denotes the standard component�wise addition of points as vectors
in �n� The result of A � B can be thought of as placing a copy of B at every
point in A �see �gure ��� Minkowski Sums have the following useful properties�

� Minkowski Sums are commutative and associative�

� If A and B are convex then A�B is also convex�

� If A� is a translation of A then A� � B is a translation of A � B by the
same amount� and if P is a point then A� P is a translation of A by P �

Minkowski Sums have been used previously in motion planning �e�g� ���� and
ray casting analysis �e�g� ����� because they transform the di�cult problem of
determining if two point sets intersect into the easier problem of determining if
a point is in a point set� It follows directly from the de�nition that A intersects
B if and only if the sum� A�B contains the origin� and that for any point P �
A intersects B �P if and only if P � �A�B�� Thus we can interpret A�B as
the set of all translations of B such that it intersects A�

��� The Expected Case Multiplicity

Let oj be a randomly positioned object such that at least part of oj is contained
in the bounding volume V � This is equivalent to saying that oj � Aj �P where
Aj has the same shape as oj and P � �V � Aj�� If we assume that all such

�A� B is shorthand for A� ��B��
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values of P are equally likely� and use volume as a measure for ��D point sets�
then the probability that oj intersects cell ci is�

E���ci� oj�� �
V�ci � oj�

V�V � oj�
����

If we assume that oj is small compared to V �i�e� V�oj� � V�V�� then V�V �
oj� � V�V�� Summing over all Nc � V�V��V�ci� cells we get�

E�Mj� �
V�ci � oj�

V�ci�
��
�

Note that most de�nitions of random placement would require that oj be con�
tained in V � not just intersect it� However under our assumption that oj is small
compared to V � the discrepancy between these two de�nitions will be small�

��� The Volume of a Minkowski Sum

To evaluate E�Mj� we must �nd the volume of a Minkowski Sum� To make
this tractable we will assume that the objects are either convex or that we use
their convex hulls to estimate their occupancy� If we assume that our cells are
axis aligned boxes with side lengths �x � �y � and �z � then we can simplify the
problem by noting that a box can be written as the Minkowski Sum of three
lines parallel to the each of the axes with lengths �x � �y � and �z �

ci � �x � �y � �x ����

We can use associativity to write�

V�ci � oj� � V��x � ��y � ��z � oj��� ����

where we now only need to compute the Minkowski Sum of a line segment and
a general convex set�

De�ne P�a�A� to be the projection of A onto the line �a� and P�a�A� to be
the projection of A onto the plane �a� Let �a � �b � and �c be three mutually
perpendicular lines� �b and �b be planes perpendicular to �a and �b respectively�
A be a line segment parallel to �a � and B be a convex bounded set� Then using
geometric constructions the following equations can be derived�

V�A�B� � L�A�A�P�a �B�� � V�B�

A�P�b�A�B�� � L�A�L�P�c�B�� � A�P�b�B��

Applying this to Equation �� and writing Px�A� and Pxy�A� when we mean
projection onto a line parallel to the x axis and a plane parallel to the x�y
plane� we get�

V �ci � oj� � �x�y�z � �x�yL�Pz�oj�� � �xL�Py�oj���z

�L�Px�oj���y�z � �xA�Pyz�oj��

��yA�Pxz�oj�� � �zA�Pxy�oj�� � V�oj�� ����
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One interesting question that we can consider here is what is the ideal shape to
make our cells� If we assume our objects have no preferred axis� or in otherwords
we expect their projections onto the x� y� and z axes to be the same on average�
then we can easily show that we minimize the total multiplicity by using cubical
cells�

We can write an simpli�ed equation by assume that the objects are randomly
oriented and our cells are cubes with length l �i�e� l � �x � �y � �z�� Let D�B�
be the expected length of B�s projection onto a random line� SA�B� be the
surface area of B� and note that expected area of a convex set B projected onto
a random plane is SA�B���� The expected value for the multiplicity will be

E�Mj� � � 	

D�oj�

l
	


SA�oj�

�l�
	

V�oj�

l�

Since the set of cells partition V � we know that the sum of the volume of the
cells equals the volume of V � Thus if our cells are cubes with volume l� we can
easily calculate�

l � �

s
V�V�
Nc

��
�

Using this and summing over all objects we get�

E��tot� � E�M� � N 	

D�O�Nc

�
�

V�V� �� 	

SA�O�Nc

�
�

�V�V� �� 	
V�O�Nc

V�V� ����

��� The Worst Case Multiplicity

In real scenes objects are usually organized in a highly non�random manner� so
the analysis of the expected case does not directly apply� Fortunately we can
calculate a bound on the multiplicity even assuming worst case positioning of the
objects� Let the cells be axis aligned boxes with side lengths �x� �y� and �z� and
oj be a randomly placed object as above� Choose a point P � such that P ��oj has
worst case occupancy� Let Abox � f�x� y� x�j
 � x � �x� 
 � y � �y� 
 � z � �zg�
By the symmetry in regular layout of cells there are many such P � values to
choose from� and moreover there exist at least one point P � such that P � � Abox�

�

Since P � � oj � Abox � oj � the maximum occupancy of oj is bounded by the
minimum occupancy of Abox � oj � Thus we have�

max�Mj� � E�M�Abox � oj�� � V �ci � ci � oj�

V �ci�
�

where we used the fact that Abox has the same shape as ci� The Minkowski Sum
of ci with itself will be another axis aligned box with side lengths ��x� ��y� and
��z� Worst case orientation can also be accounted for by noting that for any

�For simplicity we are here approximating V as being in�nite� since this will not change
the worst case multiplicity
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convex set A� L�P��A�� � �
�D�A� and A�P��A�� � �

�SA�A� for any line � and
plane �� Following Equation �� we can write this for cubical cells as��

max�Mj� � � 	
��D�oj�

l
	


SA�oj�

l�
	

V�oj�

l�
�

And in general we have�
max�M� � �E�M�

Thus worst case positioning is no more than a factor of � worse than random
positioning� and thus will have the same complexity order as the expected oc�
cupancy�

� Cell Probability

The total cell probability� ptot� is a simple abstract quantity that tell us how
often cells are accessed� In fact ptotis exactly the number of cells intersected
by a random ray on average� We can calculate ptotwithout knowing anything
about the precise distribution of the rays because we have hidden this detailed
information inside the collusion factor� Here we will take two approaches to
estimating and bounding ptot� by approximating rays as uniformly distributed
lines and by using our occupancy results�

��� Uniform Lines

We can turn a ray into a line by ignoring its starting point �and ending point if it
has one�� Its clear that any cell intersected by a ray will also be intersected by its
corresponding ray� Thus we can use lines to get a usually conservative estimate
for the probability of a cell� One especially simple method is to approximate
our rays as uniformly distributed lines� Here uniform distribution means that
the probability of a line does not depend on the position or orientation of the
line� We can then calculate the probability that line will strike a particular cell
given that it strikes the bounding volume V �e�g� �����

p�ci� �
SA�p�ci��

SA�V� ����

Since all cells are identical� this means that the probability of all cells are the
same� This is a somewhat surprising result� but it follows directly from the
symmetries of the uniform distribution� It is also interesting to note that this
equation indicates that we want to minimize the surface area of our cells which
usually means we want them to be cubes� We can sum over all cells to �nd the
total probability�

ptot �
�V�V� ��Nc

�
�

SA�V� ��
�

where we have used Equation �
 for the side length of a cubical cell� This
provides a simple estimate without knowing anything about the particular ap�
plication� An upper bound can also easily be derived by noting that the cells
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are formed from the bounding volume by a set of cutting planes� A ray can only
enter a new cell by crossing a cutting plane and it can only cross each cutting
plane once� However for many applications this way of calculating ptotis too
conservative� especially if we only want the �rst intersection for each ray�

��� Average Length of a Ray

Cleary and Wyvill �
� noted that average number of cells intersected by a ray
is just a multplicity problem� Thus we can use Equation��� to �nd the average
number cells a ray intersects� Note that a ray of length s has average diameter
of s��� zero surface area� and zero volume�

E�ptot� � � 	

LrNc

�
�

�V�V� �� ����

where Lris the average length of a ray and we have used Equation �
 for cubical
cells�

We can easily extend this to a worst case value by replacing the average ray
length with the maximum ray length and by using the fact that the worst case
multiplicity is at most eight times the expected multiplicity �Equation����

� Collusion Factor

The collusion factor� �� is the last piece of information we need to complete the
cost analysis and unfortunately its also the most di�cult to calculate� It requires
detailed information about the precise distribution of rays and objects� Except
in special cases �e�g� uniformly distributed rays� calculating the collusion factor
is prohibitively di�cult� We can easily �nd it �post facto� by keeping some
statistics� but this is of little help trying to predict costs�

Our way out of this dilemma is to argue that in practice the collusion factor
is usually a small constant� We will try to back up this assertion in two ways�
Later in this paper we do an empirical study to �nd the collusion factor for
a few example scenes and algorithms� This will show that its well behaved at
least for a few reasonable complex examples� Also we will discuss under what
conditions the collusion factor will blow up� This should help the reader decide
if the collusion factor is likely to be a problem for their particular application�

��� Relation between Collusion and Correlation

show the the collusion is

� �
�p
pavg

�o
�avg

r ����

and this means it will only be large if both the rays and the objects are non�

uniformly distributed and there is a strong correlation between their distribu�

tions�
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� Completed Cost Equation

Now we can use our estimates for ptot and �tot in our cost equation� By com�
bining Equations �
 �� ��� we get�

E�T �r�� � T� 	

�
� 	 �LrNc

�
�

�V�V�
�
�

�
Ts 	�

� 	 �LrNc

�
�

�V�V�
�
�

�
�Th
Nc

�
N 	 �D�O�Nc

�
�

V�V�
�
�

	 �SA�O�Nc

�
�

�V�V�
�
�

	 V�O�Nc

V�V�

�
����

If you assume that � is some small constant then you can use this equation
to solve for the value of Nc which minimizes the cost� One way to do this is
to approximate Nc as a continuous variable� di�erentiate the cost with respect
to Nc� and set the derivative equal to zero� The optimal discrete value of Nc

will be close to its optimal continuous value� In the general case this involves
solving for the roots of a fourth order polynomial� This can be done analytically�
but in practice we may not actually want to use the analytic minimum� The
cost function is usually quite �at near the minimum and we would prefer to
use fewer cells in order to reduce the memory usage and corresponding cache
misses� Thus you may want to use an iterative solver to �nd smallest value for
Nc which gets you su�ciently close to the analytic minimum cost�

� Order Statistics

The biggest advantage our analysis has over previous ones is that we have some
worst case bounds which we can use to derive complexity order statistics� Pre�
viously we showed that the worst case values for �tot and ptot are at most eight
times the expected values given in Equations �� and ��� The only quantity
which we don�t have a worst case bound for is �� but if we assume that the
collusion factor is roughly constant then we can bound the expected cost and
compute the complexity statistics for the expected cost of ray casting�

Unfortunately the complexity of ray casting with a uniform spatial subdi�
vision depends on how the scene geometry scales as we move to more complex
scenes� To quantify this we introduce values eD� eSA� eV � and eLto measure
how the total diameter� total surface area� total volume� and average ray length
scale with increasing complexity� We de�ne these as follows�

D�V�
V�V� �� � O�NeD �

SA�V�
V�V� �� � O�NeSA�

V�V�
V�V� � O�NeV �

Lr

V�V� �� � O�NeL�

��



Now using the assumption that � is O��� and the worst case equations for
�tot and ptot� we �nd the cost is�

E�T �r�� � O��	Nc

�
�NeL�O��	Nc

��N	Nc

��

� NeD	Nc

��

� NeSA	NeV � ����

We can solve this for the order for Ncwhich minimizes the cost and the
corresponding course by a tedious case analysis of possible dominant terms�
There turn out to be twelve di�erent possible pairs of dominant terms� The
results of the case analysis are listed in Table �� Note that we have added a
thirteenth case for conditions where our analysis indicates that the naive method
will outperform the uniform spatial subdivision�

��� How general is this result�

The fundamental assumption underlying this result is that the collusion factor�
�� can be well approximated as a constant�� We have shown that � � � for
uniformly distributed lines� It can easily be shown that � � � if the objects
are uniformly distributed� But even for more typical scenes with non�uniform
distributions of rays and objects� � will still be approximately constant as long
as there is not a strong correlation between the two distributions�

We cannot prove that this will always be the case as it is possible to construct
scenarios where � is not constant� One easy way to do this is to construct a
scene where the objects are aligned along a line and then arrange the rays so
that most of them hit most of the objects� However it is our contention that
these are pathological cases� and that most scenes encountered in practice are
well behaved with � approximately constant� We hope that our examples later
in the paper show that this is at least a plausible claim� However its left as
future work to show that its validity�

��� Storage

We can also analyze the storage used by the uniform spatial subdivision� For
each cell we need to store a value to show if the cell contains any objects and for
each cell which contains objects we need to store a list of objects whose length
is given by the occupancy of the cell� Thus the storage required for the uniform
spatial subdivision is O�Nc 	�tot�� We can expand this using the notation in
this section to get�

storage � O�Nc 	N 	Nc

�
�NeD 	Nc

�
�NeSA 	NcN

eV � ����

This can then be evaluated using the same case analysis technique and the
results are listed in Table ��

�The formal requirement is that � must be O��� with respect to N and Nc or in other
words� �must be bounded above by some constant�

��



case Nc E�T �r�� storage conditions

� O�N� O�N
�
�
	eL� O�N� eD � �

� � eSA � �
� � eV � 
�

eL � ��
� � eL � �

�
� O�N� O��� O�N� eD � �

� � eSA � �
� � eV � 
�

eL � ��
�


 O�N
�
�
eD � O�N

�
�
eD	eL� O�N

�
�
eD � eD � �

� � eSA � �
�eD� eV � 
�

eL � ��
� eD� eL � �� �

�eD
� O�N

�
�
eD � O��� O�N

�
�
eD � eD � �

� � eSA � �
�eD� eV � 
�

eL � ��
� eD

� O�N��eV � O�N
���eV

�
	eL� O�N� eD � �	eV

� � eSA � �	�eV
� �

eV � 
� eL � � ��eV
� � eL � ����eV �

�
� O�N��eV � O�NeV � O�N� eD � �	eV

� � eSA � �	�eV
� �

eV � 
� eL � � ��eV
� � eV � �

� O�N
�
�
�eD�eV �� O�N

eD�eV
�

	eL� O�N
�eD�eV

� � eD � �	eV
� � eSA � eD	eV

� �
eV � 
� eL � � eD�eV

� � eL � ��eD�eV
�

� O�N
�
�
�eD�eV �� O�NeV � O�N

�eD�eV
� � eD � �	eV

� � eSA � eD	eV
� �

eV � 
� eL � � eD�eV
� � eV � �

� O�N
�
�
���eSA�� O�NeSA� O�N� eD � �	eSA

� � eSA � �
� � eV � �eSA��

� �
eL � eSA��

� � eL � �� eSA
�
 O�N�eSA� O�N� O�N�eSA� eD � �eSA� eSA � �

� � eV � 
�
eL � �eSA

�� O�N��eD�eSA�� O�NeSA	eL� O�N�eD�eSA� eD � �	eSA
� � eSA � �

�eD�
eV � �eSA � eD� eL � eSA � eD�
eL � �� eSA

�� O�N��eSA�eV �� O�NeV � O�N�eSA�eV � eD � �eSA � eV � eSA � �	�eV
� �

eV � 
� eL � eV � eSA� eV � �
�
 O��� O�N� O��� eV � � or eL � �

� or eD 	 eL � �
or eSA 	 eL � � or �eV 	 
eL � �
or eD 	 eV 	 �eL � �

Table �� Order Results for Ray Casting
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��� Preprocessing Time

When analyzing an algorithm which uses a uniform spatial subdivision� we need
to include Tp� the preprocess time to build the subdivision� This involves creat�
ing and initializing the cells and then for each object �nding the cells it intersects
and adding it to the associated cell lists� Thus we have Tp � O�Nc	�tot�� This
is the same order as the storage which we already analyzed in the previous
section� To complete the analysis we need to analze the order of Nr for the
particular algorithm� Then we can plug these results into Equation��� to �nd
the total complexity of ray casting for a particular algorithm�

� Example Scene Scalings

Finding the appropiate values for eD� eSA� and eV will depend on the particular
application which you are analyzing� To give a �avor of how this can be done�
we will work through two illustrative examples� tesselation with triangles and
non�intersecting spheres�

	�� Tesselation

Suppose an environment of piece�wise smooth surfaces with total area A is
approximated using a set O of N convex polygons� If the vertices of each
polygon lie on a single such surface� then the total area of the polygons will
be bounded by A� If we assume that the interior angles of the polygons are
restricted to be above some threshold then we �nd that D�oj� � O�

p
N� by

applying Lagrange multipliers subject to the constraint on total area� Since
polygons have zero volume we know that eD � �

� � eSA � 
� and eV � 
� In
addition let�s assume that the average length of a ray does not change �i�e�
eL � 
�� We can look this up in Table � and see that this falls into case �� This

we can cast rays in O�N
�
� � time using O�N� space�

	�� Non
intersecting spheres

put a discussion of non�intersection spheres and k�fat objects here�

�� Experimental results

put total cost analysis expression here� do experimental analysis of � and pavg
and �tot and time and storage�
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