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Abstract

Lightcuts is a scalable framework for computing realistic illumina-
tion. It handles arbitrary geometry, non-diffuse materials, and illu-
mination from a wide variety of sources including point lights, area
lights, HDR environment maps, sun/sky models, and indirect illu-
mination. At its core is a new algorithm for accurately approximat-
ing illumination from many point lights with a strongly sublinear
cost. We show how a group of lights can be cheaply approximated
while bounding the maximum approximation error. A binary light
tree and perceptual metric are then used to adaptively partition the
lights into groups to control the error vs. cost tradeoff.

We also introduce reconstruction cuts that exploit spatial coherence
to accelerate the generation of anti-aliased images with complex il-
lumination. Results are demonstrated for five complex scenes and
show that lightcuts can accurately approximate hundreds of thou-
sands of point lights using only a few hundred shadow rays. Re-
construction cuts can reduce the number of shadow rays to tens.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture;
Keywords: many lights, raytracing, shadowing

1 Introduction

While much research has focused on rendering scenes with com-
plex geometry and materials, less has been done on efficiently han-
dling large numbers of light sources. In typical systems, render-
ing cost increases linearly with the number of lights. Real world
scenes often contain many light sources and studies show that peo-
ple generally prefer images with richer and more realistic lighting.
In computer graphics however, we are often forced to use fewer
lights or to disable important lighting effects such as shadowing to
avoid excessive rendering costs.

The lightcuts framework presents a new scalable algorithm for com-
puting the illumination from many point lights. Its rendering cost is
strongly sublinear with the number of point lights while maintain-
ing perceptual fidelity with the exact solution. We provide a quick
way to approximate the illumination from a group of lights, and
more importantly, cheap and reasonably tight bounds on the max-
imum error in doing so. We also present an automatic and locally
adaptive method for partitioning the lights into groups to control the
tradeoff between cost and error. The lights are organized into a light
tree for efficient partition finding. Lightcuts can handle non-diffuse
materials and any geometry that can be ray traced.

Having a scalable algorithm enables us to handle extremely large
numbers of light sources. This is especially useful because many
other difficult illumination problems can be simulated using the il-
lumination from sufficiently many point lights (e.g., Figure 1). We
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Figure 1: Bigscreen model: an office lit by two overhead area lights,
two HDR flat-panel monitors, and indirect illumination. Our scal-
able framework quickly and accurately computed the illumination
using 639,528 point lights. The images on the monitors were also
computed using our methods: lightcuts and reconstruction cuts.

demonstrate three examples: illumination from area lights, from
high dynamic range (HDR) environment maps or sun/sky models,
and indirect illumination. Unifying different types of illumination
within the lightcuts framework has additional benefits. For exam-
ple, bright illumination from one source can mask errors in approx-
imating other illumination, and our system automatically exploits
this effect.

A related technique, called reconstruction cuts, exploits spatial co-
herence to further reduce rendering costs. It allows lightcuts to be
computed sparsely over the image and intelligently interpolates be-
tween them. Unlike most interpolation techniques, reconstruction
cuts preserve high frequency details such as shadow boundaries and
glossy highlights. Lightcuts can compute the illumination from
many thousands of lights using only a few hundred shadow rays.
Reconstruction cuts can further reduce this to just a dozen or so.

The rest of the paper is organized as follows. We discuss previ-
ous work in Section 2. We present the basic lightcuts algorithm in
Section 3, give details of our implementation in Section 4, discuss
different illumination applications in Section 5, and show lightcut
results in Section 6. Then we describe reconstruction cuts in Sec-
tion 7 and demonstrate their results in Section 8. Conclusions are in
Section 9. Appendix A gives an optimization for spherical lights.

2 Previous Work

There is a vast body of work on computing illumination and shad-
ows from light sources (e.g., see [Woo et al. 1990; Hasenfratz et al.
2003] for surveys). Most techniques accelerate the processing of
individual lights but scale linearly with the number of lights.

Several techniques have dealt explicitly with the many lights prob-
lem. [Ward 1994] sorts the lights by maximum contribution and
then evaluates their visibility in decreasing order until an error
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bound is met. We will compare lightcuts with his technique in Sec-
tion 6. [Shirley et al. 1996] divide the scene into cells and for each
cell split the lights into important and unimportant lists with the
latter very sparsely sampled. This or similar Monte Carlo tech-
niques can perform well given sufficiently good sampling proba-
bility functions over the lights, but robustly and efficiently com-
puting these functions for arbitrary scenes is still an open problem.
[Paquette et al. 1998] present a hierarchical approach using light
trees similar to the ones we will use. They provide guaranteed error
bounds and good scalability, but cannot handle shadowing which
limits the applicability. [Fernandez et al. 2002] accelerate many
lights by caching per light visibility and blocker information within
the scene, but this leads to excessive memory requirements if the
number of lights is very large. [Wald et al. 2003] can efficiently
handle many lights under the assumption that the scene is highly
occluded and only a small subset contribute to each image. This
subset is determined using a particle tracing preprocess.

Illumination from HDR environment maps (often from photographs
[Debevec 1998]) is becoming popular for realistic lighting. Smart
sampling techniques can convert these to directional point lights for
rendering (e.g., [Agarwal et al. 2003; Kollig and Keller 2003]), but
typically many lights are still required for high quality results.

Instant radiosity [Keller 1997] is one of many global illumination
algorithms based on stochastic particle tracing from the lights. It
approximates the indirect illumination using many virtual point
lights. The resolvable detail is directly related to the number of
virtual lights. This makes it a perfect fit with lightcuts, whereas
previously it was largely restricted to quick coarse indirect approx-
imations. [Wald et al. 2002] use it in their interactive system and
added some clever techniques to enhance its resolution.

Photon mapping is another popular, particle-based solution for indi-
rect illumination. It requires hemispherical final gathering for good
results, typically with 200 to 5000 rays per gather [Jensen 2001,
p.140]. In complex scenes, lightcuts compute direct and indirect il-
lumination, using fewer rays than a standard hemispherical gather.

Hierarchical and clustering techniques are widely used in many
fields. Well known examples in graphics include the radiosity tech-
niques (e.g., [Hanrahan et al. 1991; Smits et al. 1994; Sillion and
Puech 1994]). Unlike lightcuts, these compute view-independent
solutions that, if detailed, can be very compute and storage inten-
sive. Also since they use meshes to store data, they have difficulty
with some common geometric flaws, such as coincident or inter-
secting polygons. Final gather stages are often used to improve
image quality. The methods of [Kok and Jansen 1992] and [Scheel
et al. 2001; Scheel et al. 2002] accelerate final gathers by trying
to interpolate when possible and only shooting shadow rays when
necessary. While very similar in goals to reconstruction cuts, they
use heuristics based on data in a radiosity link structure.

Numerous previous techniques have used coherence and interpo-
lation to reduce rendering costs. Reconstruction cuts’ novelty and
power comes from using the lightcuts framework. Like several pre-
vious methods, reconstruction cuts use directional lights to cheaply
approximate illumination from complex sources. [Walter et al.
1997] use them for hardware accelerated walkthroughs of precom-
puted global illumination solutions. [Zaninetti et al. 1999] call them
light vectors and use them to approximate illumination from various
sources including area lights, sky domes, and indirect.

3 The Lightcuts Approach

Given a set of point light sources S, the radiance L caused by their
direct illumination at a surface point x viewed from direction ω is a

Figure 2: A simple scene with 4 point lights. (a) The exact solution.
(b) Approximate solution formed by clustering the two lights on the
right. (c) The orange region shows where the exact and clustered
solutions are indistinguishable. Errors are typically largest near the
lights and where their visibility differs.

product of each light’s material, geometric, visibility and intensity
terms summed over all the lights:

LS(x,ω) = ∑
i∈S

material

Mi(x,ω) Gi(x)

geometric

visibility

Vi(x) Ii

intensity

(1)

The cost of an exact solution is linear in the number of lights since
these terms must be evaluated for each light. To create a scalable,
sublinear method, we need a way to approximate the contribution of
a group of lights without having to evaluate each light individually.

Let us define a cluster, C⊆ S, to be a set of point lights along with
a representative light j ∈ C. The direct illumination from a cluster
can be approximated by using the representative light’s material,
geometric, and visibility terms for all the lights to get:

LC(x,ω) = ∑
i∈C

Mi(x,ω)Gi(x)Vi(x) Ii

≈ M j(x,ω)G j(x)V j(x) ∑
i∈C

Ii (2)

The cluster intensity (IC = ∑ Ii) can be precomputed and stored with
the cluster making the cost of a cluster approximation equal to the
cost of evaluating a single light (i.e. we have replaced the cluster by
a single brighter light). The amount of cluster error will depend on
how similar the material, geometric, and visibility terms are across
the cluster. A simple example is shown in Figure 2.

Light Tree. No single partitioning of the lights into clusters is
likely to work well over the entire image, but dynamically finding
a new cluster partitioning for each point could easily prove pro-
hibitively expensive. We use a global light tree to rapidly compute
locally adaptive cluster partitions. A light tree is a binary tree where
the leaves are individual lights and the interior nodes are light clus-
ters containing the lights below them in the tree. A cut through the
tree is a set of nodes such that every path from the root of the tree
to a leaf will contain exactly one node from the cut. Thus each cut
corresponds to a valid partitioning of the lights into clusters. An
example light tree and three different cuts are shown in Figure 3.

While every cut corresponds to a valid cluster partitioning, they
vary greatly in their costs and the quality of their approximated il-
lumination. We need a robust and automated way to choose the
appropriate cut to use locally. As the cuts will vary across the im-
age, some points, or pixels, may use a particular cluster to reduce
costs while others replace it with its children for increased accu-
racy. Such transitions could potentially cause objectionable image
artifacts. To prevent this, we only use clusters when we can guar-
antee that the approximation error introduced by the cluster will
be below a perceptual visibility threshold. Weber’s law [Blackwell
1972] is a standard, well-known perceptual result that says the min-
imum perceptible change in a visual signal is roughly equal to a
fixed percentage of the base signal. Under worst case conditions,
humans can detect changes of just under 1%, though in practice,
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Figure 3: A light tree and three example cuts. The tree is shown on
the top with the representative lights and cluster intensities for each
node. Leaves are individual lights while upper nodes are progres-
sively larger light clusters. Each cut is a different partitioning of the
lights into clusters (the orange cut is the same as Figure 2). Above
each cut, the regions where its error is small are highlighted.

the threshold is usually higher. In our experience, an error ratio of
2% results in no visible artifacts across a wide variety of scenes and
was used for all our results. Changing this value can be used to vary
the tradeoff between performance and accuracy.

Choosing Lightcuts. Using a relative error criterion requires an
estimate of total radiance before we can decide whether a particular
cluster is usable. To solve this difficulty, we start with a very coarse
cut (e.g., the root of the light tree) and then progressively refine it
until our error criterion is met. For each node in the cut we compute
both its cluster estimate (Equation 2) and an upper bound on its
error (Section 4.1). Each refinement step considers the node in the
current cut with the largest error bound. If its error bound is greater
than our error ratio times the current total illumination estimate, we
remove it from the cut, replace it with its two children from the light
tree, compute their cluster estimates and error bounds, and update
our estimate of the total radiance. Otherwise, the cut obeys our
error criterion and we are done. We call such a cut, a lightcut.

To make this process more efficient, we require that the represen-
tative light for a cluster be the same as for one of its two children.
This allows us to reuse the representative light’s material, geomet-
ric and visibility terms when computing that child. We use a heap
data structure to efficiently find the cluster node in the cut with the
highest error bound. If present in the cut, individual lights (i.e. light
tree leaf nodes) are computed exactly and thus have zero error.

Our relative error criterion overestimates the visibility of errors in
very dark regions. For example, a fully occluded point would be
allowed zero error, but even at black pixels sufficiently small errors
are not visible. Therefore, we also set a maximum cut size and, if
the total number of nodes on the cut reaches this limit, stop further
refinement. We chose our maximum cut size of 1000 to be large
enough to rarely be reached in our results and then only in dark
regions where the extra error is not visible.

4 Implementing Lightcuts

Our implementation supports three types of point lights: omni, ori-
ented, and directional. Omni lights shine equally in all directions

from a single point. Oriented lights emit in a cosine-weighted hemi-
spherical pattern defined by their orientation, or direction of max-
imum emission. Directional lights simulate an infinitely far away
source emitting in a single direction. All lights have an intensity Ii.

Building the Light Tree. The light tree groups point lights together
into clusters. Ideally, we want to maximize the quality of the clus-
ters it creates (i.e. combine lights with the greatest similarity in their
material, geometric and visibility terms). We approximate this by
grouping lights based on spatial proximity and similar orientation.

We divide the point lights by type into separate omni, oriented, and
directional lists and build a tree for each. Conceptually though, we
think of them as part of a single larger tree. Each cluster records its
two children, its representative light, its total intensity IC, an axis-
aligned bounding box, and an orientation bounding cone. The cone
is only needed for oriented lights. Although infinitely far away,
directional lights are treated as points on the unit sphere when com-
puting their bounding boxes. This allows directional lights to use
the same techniques as other point lights when building light trees
and, more importantly, later for bounding their material terms Mi.

Similarity Metric. Each tree is built using a greedy, bottom-up ap-
proach by progressively combining pairs of lights and/or clusters.
At each step we choose the pair that will create the smallest clus-
ter according to our cluster size metric IC(α2

C + c2 (1− cosβC)2),
where αC is the diagonal length of the cluster bounding box and βC
is the half-angle of its bounding cone. The constant c controls the
relative scaling between spatial and directional similarity. It is set
to the diagonal of the scene’s bounding box for oriented lights and
zero for omni and directional lights.

The representative light for a cluster is always the same as for one
of its children and is chosen randomly based on the relative intensi-
ties of the children. Each individual light is its own representative.
Thus the probability of a light being the representative for a cluster
is proportional to its intensity. This makes the cluster approxima-
tion in Equation 2 unbiased in a Monte Carlo sense. However once
chosen, the same representative light is used for that cluster over the
entire image. Tree building, by its very nature, cannot be sublinear
in the number of lights, but is generally not a significant cost since
it only has to be done once per image (or less if the lights are static).

4.1 Bounding Cluster Error

To use the lightcuts approach, we need to compute reasonably
cheap and tight upper bounds on the cluster errors (i.e. the differ-
ence between the exact and approximate versions of Equation 2).
By computing upper bounds on the material, geometric, and vis-
ibility terms for a cluster, we can multiply these bounds with the
cluster intensity to get an upper bound for both the exact and ap-
proximated cluster results. Since both are positive, this is also an
upper bound on the cluster error (i.e. their absolute difference).

Visibility Term. The visibility of a point light is typically zero
or one but may be fractional (e.g., if semitransparent surfaces are
allowed). Conservatively bounding visibility in arbitrary scenes is
a hard problem, so we will use the trivial upper bound of one for
the visibility term (i.e. all lights are potentially visible).

Geometric Term. The geometric terms for our three point light
types are listed below, where yi is the light’s position and φi is the
angle between an oriented light’s direction of maximum emission
and direction to the point x to be shaded.

Light Type Omni Oriented Directional

Gi(x) =
1

‖yi−x‖2
max(cosφi, 0)
‖yi−x‖2 1

(3)
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Figure 4: Bounding the minimum angle (and hence maximum co-
sine) to a bounding volume. See Equation 4.

The upper bound for directional lights is trivial since their geomet-
ric factor is always one. Omni lights are also easy. We just compute
the minimum distance between the point x and the bounding vol-
ume of the cluster. Oriented lights are more complex because of
the additional cosine factor. We could use the trivial cosine upper
bound of one, but we prefer a tighter bound.

Let’s start with the simpler problem shown in Figure 4. For any
point p = [px, py, pz], let θ be the angle between the vector from the
origin to p and the z-axis. We want to find an upper bound on cosθ

over all points in some bounding volume. For any point p, we have
cosθ =

pz√
p2x +p2y +p2z

. To create an upper bound, we first replace the
numerator by the maximum value of pz within the bounding volume
and then choose the px and py values to minimize or maximize the
denominator depending on the sign of the numerator to get1:

cosθ ≤


max(pz)√

min(p2
x)+min(p2

y)+(max(pz))
2

if max(pz)≥ 0

max(pz)√
max(p2

x)+max(p2
y)+(max(pz))

2
otherwise

(4)

To apply this to bounding cosφi for oriented lights, we transform
the problem as illustrated in Figure 5. First consider every point
pair [x, yi] in the cluster and translate both points by −yi. This
translates all the lights to the origin but spreads the point x across
a volume with the same size as the cluster’s bounding volume (the
bounding volume’s shape is the same but inverted). Second apply a
coordinate transform that rotates the z-axis to match the axis of the
cluster’s orientation bounding cone. Now we can use Equation 4
to compute the minimum angle between the volume and the cone’s
axis. If this angle lies inside the bounding cone then we can only
use the trivial upper bound of one, but if it lies outside then φi must
be at least as large as this angle minus the cone’s half-angle.

Material Term. The material term Mi is equal to the BRDF (Bidi-
rectional Reflectance Distribution Function) times the cosine of the
angle between the vector, yi− x, and the surface normal at x. We
have already described bounding the cosine of the angle to a bound-
ing volume (Figure 4), so that only leaves the BRDF to be bounded.

Our current system supports three types of BRDF components: dif-
fuse or lambertian, Phong [Phong 1975], and isotropic Ward [Lar-
son 1992]. Multiple components can be summed when creating a
BRDF. A diffuse BRDF component is simply a constant (i.e. does
not depend on viewing or illumination directions) and so is triv-
ial to bound. Phong components vary with the cosine of the angle
between the vector to the light and the mirror reflection direction,
raised to some exponent. We reuse the cosine bounding machin-
ery already described to bound any Phong components. This same
approach can be adapted to any similar BRDF component that is
symmetric about an axis.

The isotropic Ward BRDF is not symmetric about any axis, because
it is based on the half-angle (i.e. the angle between the surface nor-
mal and a vector halfway between the viewing and lighting vectors).

1Note if px ranges from -2 to 1 then max(px) = 1 and (max(px))2 = 1
but min(p2

x) = 0 and max(p2
x) = 4.
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Figure 5: Conceptual transformation for bounding the emission an-
gle (green) with respect to a cluster of oriented lights.

We have also developed a reasonably cheap and tight way to bound
the minimum half-angle to a cluster. Details are in [Walter 2005].
We tested all our bounds numerically to confirm that they are valid.

In principle, lightcuts can work with any BRDF, as long as there is
a good method to bound its maximum value over a cluster. Delta
components (e.g., a mirror) are handled by the standard ray tracing
method of recursively tracing reflected and/or refracted rays.

5 More Illumination Applications

Once we have a scalable solution for robustly approximating the
illumination from large numbers of point lights, we can apply it to
other difficult problems. The examples included here are illumina-
tion from: area lights, high dynamic range environment maps, and
indirect illumination. Integrating different illumination types in the
lightcuts framework has many advantages. For example, lightcuts
automatically reduce the accuracy of one component when the error
will be masked by strong illumination from another component.

Area Lights. Illumination and soft shadows from area lights are
difficult to compute, and standard techniques often scale poorly
with the size and number of area lights. A common approach is
to approximate each area light using multiple point lights, how-
ever, the number required varies considerably depending on the lo-
cal configuration. Locations near area lights or in their penumbra
require many point lights while others require few. Many heuristics
have been proposed (e.g., subdivide down to some fixed solid an-
gle), but these may not work everywhere and often require manual
parameter tweaking. In our system, each light can be converted into
a conservatively large number of points. The lightcut algorithm will
automatically and adaptively choose the number of samples to ac-
tually use locally. Any diffusely-emitting area light can be approxi-
mated by oriented lights on its surface. For spherical lights, an even
better method using omni lights is described in Appendix A.

HDR Environment Maps. High dynamic range environment maps
are a popular way to capture illumination from real world environ-
ments and apply it to synthetic scenes. Computing accurate illumi-
nation, especially shadows, from them can be very expensive.

The most common approach is to convert the environment map into
a discrete set of directional lights. One critical question is how
many directional lights to use. Using too few causes image artifacts
such as blocky shadows, while using too many increases render-
ing costs substantially. For example, [Agarwal et al. 2003] suggest
using 300 directional lights as generally adequate. In our experi-
ence, 300 is sufficient for isolated objects, but rendering complete
scenes with significant occlusion and/or narrow glossy BRDFs may
require 3000 or more. The lightcuts approach can handle such large
numbers of lights much more efficiently than previous approaches.

Indirect Illumination. Indirect illumination (also called global il-
lumination) is desirable for its image quality and sense of realism,
but is considered too expensive for many applications. Much re-
search has gone into increasing their physical and mathematical ac-



Lightcuts: A Scalable Approach to Illumination, Walter et. al., SIGGRAPH 2005 5

Lightcut Image Reference Image

Error Image 16 x Error Image

Point Lights Avg Cut Size Avg Shadow Rays Time Reference
4608 264 259 128s 1096s

Figure 6: Kitchen scene with direct light from 72 area sources.

curacy, but there is also interest in lower cost approximations with
the tradeoff of lower fidelity, as long as they do not introduce ob-
jectionable image artifacts (e.g., [Tabellion and Lamorlette 2004]).

Instant radiosity is one such method. It first tracks light particles
as they probabilistically scatter through a scene. Then virtual point
lights are created at these scatter locations such that their aggregate
illumination simulates the effect of indirect illumination. There is
a cost vs. quality tradeoff in choosing the number of virtual lights.
Using more lights reproduces more detail in the indirect illumina-
tion, but also increases cost of evaluating so many lights. Prior
results have mostly been limited to tens or at most hundreds of vir-
tual lights (e.g., [Keller 1997; Wald et al. 2002]). With our scalable
algorithm, we can use thousands or even millions of virtual lights
to reproduce more detail in the indirect illumination.

Prior instant radiosity results were limited to diffuse-only indirect
because of the small number of virtual indirect lights used. Freed
from this restriction, our system can also include some glossy indi-
rect effects. Only a BRDF’s diffuse component is used when con-
verting particle hits to virtual oriented point lights, but unlike prior
systems, we use the full BRDF at the points they illuminate.

When using instant radiosity, one needs to be aware of its inherent
limitations. It cannot reproduce some types of indirect illumination
(e.g., caustics); other methods must be used if these are desired. It
also has difficulties with short range and/or glossy indirect effects
though using more virtual lights helps. The particle tracing is a
stochastic process and thus there is considerable randomness in the
positions of the virtual lights. The contribution of any particular
light is largely noise, and it is only by combining the results over
many lights that we get statistically reliable information. Without a
noise suppression technique, this noise would be highly visible in
locations whose illumination is easily dominated by one or a few
lights (e.g., concave corners or sharp glossy reflections)

The noise suppression is typically accomplished by limiting the
maximum contribution from a virtual light. This biases the results
but is preferable to objectionable noise artifacts. [Keller 1997] used
hardware that clamped values to a maximum of 255 and [Wald et al.
2002] had the user specify a minimum distance to use when com-
puting the geometric factor of an indirect light. The latter does not
work with non-diffuse BRDFs, so we apply a clamping threshold to

Lightcut Image Reference Image

Cut Size (False Color) 16 x Error Image

Point Lights Avg Cut Size Avg Shadow Rays Time Reference
3000 (187) 132 (168) 118 54s 424s

Figure 7: Tableau scene illuminated by an HDR environment map.
In parentheses are averages over only pixels containing geometry.

the total contribution, MiGiViIi, of individual indirect lights. We do
not clamp the contribution of clusters since they will be handled by
normal lightcut refinement if too bright. This clamping threshold
can be user-specified2 or automatically determined as follows.

Our automatic clamping limits each indirect light to contribute no
more than a fixed percentage of the total result. Since this clamping
threshold is computed from the same noisy particle data, we must
take care that it doesn’t accentuate the noise. We use half the error
ratio parameter from the lightcut selection/refinement process (e.g.,
1% if the error ratio is 2%). During lightcut refinement, we keep
track of any indirect nodes on the cut that may require clamping. In
our experience, automatic clamping requires negligible overhead,
works at least as well as a manually-tuned clamping threshold, and
is one less parameter for the user to worry about.

6 Lightcut Results

In this section we demonstrate the results of applying our lightcuts
implementation to five scenes with varying illumination. All results
use an error ratio of 2% and a maximum cut size of 1000 nodes. All
images in this section have a resolution of 640x480 with one eye
ray per pixel, however this sometimes requires shading multiple
points due to reflections and transparency. Timings are for a single
workstation with two 3 GHz Xeon processors, though our system
is also capable of efficiently using multiple machines.

Error. Lightcuts conservatively bound the maximum error per clus-
ter to ensure that individual cluster refinement transitions are not
visible. Theoretically, the errors from many different clusters could
still sum up to a large and visible error. In practice we have not
found this to be a problem for two reasons. The per cluster error
bounds are worst case bounds; the actual average cluster error is
much less than our 2% bound. Also uncorrelated errors accumu-
late much more slowly than correlated errors would (i.e. O(

√
N)

vs. O(N)). During tree building, we randomize the choice of repre-
sentative lights specifically to ensure that the cluster errors will be

2 1
1000 of the image white point is a reasonable starting point.
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Kitchen Tableau Grand Central Temple
Model Polygons Number of Point Lights Per Pixel Averages Tree Image

Direct Env Map Indirect Total (d+e+i) Lightcut Size Shadow Rays Build Time
Kitchen 388552 (72) 4608 5064 50000 59672 (54+244+345) 643 (0.8%) 478 3.4s 290s
Tableau 630843 0 3000 10000 13000 (0+112+104) 216 (1.1%) 145 0.9s 79s
Grand Central 1468407 (820) 38400 5064 100000 143464 (73+136+480) 689 (0.33%) 475 9.7s 409s
Temple 2124003 0 5064 500000 505064 (0+185+437) 622 (0.07%) 373 44s 225s
Bigscreen 628046 (4) 614528 0 25000 639528 (83+0+222) 305 (0.04%) 228 46s 98s

Figure 9: Lightcut results for 640x480 images of our five scenes with all illumination components enabled. Average cut sizes include how
many came from each of the three components: direct, environment map, and indirect. Average shadow rays per pixel is also shown as a
percentage of the total number of lights. The aliasing (e.g., windows in Grand Central) is due to using only one eye ray per pixel here.

statistically uncorrelated. Essentially, lightcuts provide a stochas-
tic error bound rather than an absolute one; large total errors are
possible but very unlikely.

The kitchen model, shown in Figure 6, is based on part of an ac-
tual house. It contains 72 area sources, each approximated using 64
point lights for a total of 4608 point lights. Even a close examina-
tion reveals no visible differences between the lightcut result and a
reference image that evaluated each point light exactly. The error
image appears nearly black. Magnifying the errors by a factor 16
shows that, as expected, the errors are generally larger in brighter
regions and consist of many discontinuities caused by transitions
between using a cluster and refining it. The lightcut image took
128 seconds with an average cut size of 264 and 259 shadow rays
per pixel, while the reference image took much longer at 1096 sec-
onds with an average of 3198 shadow rays per pixel. Shadow rays
are not shot to lights whose material or geometric terms are zero.

The tableau model, in Figure 7, has several objects with different
glossy materials on a wooden tray and lit by a captured HDR envi-
ronment map (the Kitchen map from [Debevec 1998], not related to
our kitchen model). We used the technique of [Agarwal et al. 2003]
to convert this map to 3000 directional lights for rendering. Again
there are no visible differences between the reference image and the
lightcut image. A visualization shows the per pixel cut size (i.e. the
number of nodes on the lightcut). Cut size corresponds closely to
rendering cost and tends to be largest in regions of high occlusion.

Scalability. As the number of point lights increases, lightcuts scale
fundamentally better (i.e. sublinearly vs. linearly) than prior tech-
niques. To demonstrate this, we varied the number of point lights
in the kitchen and tableau examples above by changing the number
of point lights created per area light and directional lights created
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Figure 8: Lightcut performance scales fundamentally better (i.e.
sublinearly) as the number of point lights increase.

from the environment map, respectively. Image times vs. number
of point lights are shown in Figure 8 for both lightcuts and the naive
(reference) solutions. We also compare to [Ward 1994] which we
consider the best of the alternative approaches with respect to gen-
erality, robustness, and the ability to handle thousands of lights.

Ward’s technique computes the potential contribution of all the
lights assuming full visibility, sorts these in decreasing order, and
then progressively evaluates their visibility until the total remain-
ing potential contribution falls below a fraction of the total of the
evaluated lights (10% in our comparison). Since shadow rays
(i.e.visibility tests) are usually the dominant cost, reducing them
usually more than compensates for the cost of the sort (true for the
kitchen and just barely for tableau). However, the cost still behaves
linearly as shown in plots. Suppose we had 1000 lights whose un-
occluded contributions would be roughly equal. We would have to
check the visibility of at least 800 lights to meet a 10% total error
bound3, and this number grows linearly with the lights. This case
is the Achilles’ heel of Ward’s technique, or any technique that pro-
vides an absolute error bound. Lightcuts superior scalability means
that its advantage grows rapidly as the number of lights increase.

Mixed Illumination. We can use this scalability to compute richer
and more complex lighting in our scenes as shown in Figure 9.
Grand Central is a model of the famous landmark in New York
City and contains 220 omni point lights distributed near the ceil-
ing of the main hall and 600 spherical lights in chandeliers in the
side hallways. The real building actually contains even more lights.
Temple is a model of an Egyptian temple and is our most geometri-
cally complex at 2.1 million triangles. Such geometric complexity

3Using the optimal value of 0.5 for the visibility of the untested lights.

Bigscreen Model Cut Size (False Color)

Figure 10: Bigscreen model. See Figure 9 for statistics.
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causes aliasing problems because we are using only one eye ray
per pixel. The next section will introduce reconstruction cuts that
allow us to perform anti-aliasing at a reduced cost. The bigscreen
model (Figure 10) shows an office lit by two overhead area lights
(64 points each) and by two large HDR monitors displaying images
of our other scenes. The monitors have a resolution of 640x480 and
were simulated by converting each of their pixels into a point light.

We’ve added a sun/sky model from [Preetham et al. 1999], which
acts like an HDR environment map, to the kitchen, Grand Cen-
tral, and temple. The sun is converted into 64 directional lights
and the sky into 5000 directional lights distributed, uniformly over
the sphere of directions. We also added indirect illumination to all
the models using the instant radiosity approach. In the kitchen and
Grand Central models only a fraction of particles from the sun/sky
make it through the windows into the interior; many indirect lights
end up on the outside of the buildings. With our scalable algorithm,
we can compensate by generating more indirect lights. Temple uses
the most indirect lights because its model covers the largest area.

With lightcuts the number of lights is not strongly correlated with
image cost. Instead the strongest predictor of image cost is the
degree of occlusion of the light sources. Thus the kitchen and par-
ticularly Grand Central are the most expensive because of the high
degree of occlusion to their light sources especially the sun/sky. Al-
though temple and bigscreen have more point lights and geometry,
they are less expensive due to their higher visibility.

Shadow rays are the dominant cost in lightcuts and consume
roughly 50% of the total time, even though this is the most opti-
mized part of our code (written in C while the rest is Java). Com-
puting error bounds consumes another 20% and 10% is shading.
Various smaller operations including tree traversal, maintaining the
max heap, updating estimates, etc. consume the rest. Tree building
starts to be significant for the largest numbers of lights but there are
much faster methods than our simple greedy approach.

Bound Tightness. The ability to cheaply bound the maximum con-
tribution, and hence the error, from a cluster is essential for our scal-
ability. Using tighter (and probably more expensive) bounds might
reduce the average cut size and potentially reduce overall costs. In
Figure 11, we show the cut sizes that would result if we had exact
bounds on the product of the geometric and material terms Gi Mi.
This is the best we can hope to achieve without bounds on visibility.
Overall, our bounds perform very well. Indirect lights are harder to
bound due to their wider dispersal, but our bounds still perform
well. Significant further gains will likely require efficient conserva-
tive visibility bounds. This is possible in many specific cases (e.g.,
see [Cohen-Or et al. 2003]), but an unsolved problem in general.

Model Illumination Point Avg Cut Size
Lights Lightcut Exact Gi Mi Bound

Kitchen Direct 4608 264 261
+ Indirect 54608 643 497

Tableau Env Map 3000 132 120
+ Indirect 13000 216 153

Temple Sun/Sky 5064 294 287

Figure 11: How tighter bounds would affect lightcut size.

7 Reconstruction Cuts

Reconstruction cuts are a new technique for exploiting spatial co-
herence to reduce average shading costs. The idea is to compute
lightcuts sparsely over the image (e.g., at the corners of image
blocks) and then appropriately interpolate their illumination infor-
mation to shade the rest of the image. Although lightcuts allow

the scalable computation of accurate illumination from thousands
or millions of point lights, they still typically require shooting hun-
dreds of shadow rays per shaded point. By taking a slightly less
conservative approach, reconstruction cuts are able to exploit illu-
mination smoothness to greatly reduce the shading cost.

The simplest approach would be to simply interpolate the radiances
from the sparse lightcuts (e.g., Gouraud shading), but this would
cause objectionable blurring of high frequency image features such
as shadow boundaries and glossy highlights. Many extensions of
this basic idea have been proposed to preserve particular types of
features (e.g., [Ward and Heckbert 1992] interpolates irradiance to
preserve diffuse textures and [Křivánek et al. 2005] use multiple
directional coefficients to preserve low frequency gloss), but we
want to preserve all features including sharp shadow boundaries.

To compute a reconstruction cut at a point, we first need a set of
nearby samples (i.e. locations where lightcuts have been computed
and processed for easy interpolation). Then we perform a top-down
traversal of the global light tree. If all the samples agree that a node
is occluded then we immediately discard it. If a node’s illumination
is very similar across the samples then we cheaply interpolate it us-
ing impostor lights. These are special directional lights designed to
mimic the aggregate behavior of a cluster as recorded in the sam-
ples. Otherwise we default to lightcut-style behavior; refining down
the tree until the errors will be small enough and using the cluster
approximation from Equation 2, including shooting shadow rays.

Interpolating or discarding nodes, especially if high up in the tree,
provides great cost savings. However when the samples straddle a
shadow boundary or other sharp feature, we revert to more robust
but expensive methods for the affected nodes. Because reconstruc-
tion cuts effectively include visibility culling, they are less affected
by high occlusion scenes than lightcuts are.

Samples. A sample k is created by first computing a lightcut for a
point xk and viewing direction ωk. This will include computing a
radiance estimate L̃k

n at every light tree node n on the lightcut using
Equation 2. For each node above the cut, we define L̃k

n as the sum of
the radiance estimates of all of its descendants on the cut. Similarly,
the total radiance estimate L̃k

T is the sum over all nodes in the cut.

To convert a lightcut into a sample, we create impostor directional
point lights (with direction dk

n and intensity γk
n ) for each node on

or above the cut. Their direction mimics the average direction of
incident light from the corresponding cluster or light, and their illu-
mination exactly reproduces the radiance estimate L̃k

n at the sample
point. Impostor lights are never occluded and hence relatively inex-
pensive to use (i.e. both visibility and geometric terms equal one).

For nodes on the cut, the impostor direction dk
n is the same as from

its representative light. For nodes above the cut, dk
n is the average

of the directions for its descendants on the cut, weighted by their
respective radiance estimates. Using this direction we can evaluate
the impostor’s material term Mk

n and its intensity γk
n . We also com-

pute a second intensity Γk
n based on the total radiance estimate and

used to compute relative thresholds (i.e. relative magnitude of the
node compared to the total illumination).

γ
k
n = L̃k

n(x
k,ωk) / Mk

n(xk,ωk) (5)

Γ
k
n = L̃k

T(xk,ωk) / Mk
n(xk,ωk) (6)

Occasionally we need an impostor directional light for a node below
a sample’s lightcut. These are created as needed and use the same
direction as their ancestor on the cut, but with impostor’s intensity
diminished by the ratio between the node’s cluster intensity IC and
that of its ancestor.
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Exact sample size depends on the lightcut, but 24KB is typical.
Samples store 32 bytes per node on or above the lightcut which
includes 7 floats (1 for Γk

n and 3 each for dk
n and γk

n ) and an offset to
its children’s data if present. We decompose the image into blocks
so that only a small subset of the samples is kept at any time.

Computing a Reconstruction Cut. Given a set of samples, we
want to use them to quickly estimate Equation 1. Reconstruction
cuts use a top-down traversal of the global light tree. At each node
visited, we compute the minimum and maximum impostor inten-
sities γk

n over the samples k, and a threshold τn, the lightcut error
ratio (e.g.,2%) times the minimum of Γk

n over the samples. Then
we select the first applicable rule from:

1. Discard. If max(γk
n) = 0, then the node had zero radiance at all

the samples and is assumed to have zero radiance here as well.

2. Interpolate. If max(γk
n)−min(γk

n) < τn and min(γk
n) > 0, then

we compute weighted averages of dk
n and γk

n to create an inter-
polated impostor directional light. The estimate for this node
is then equal to the material term for the interpolated direction
times the interpolated intensity.

3. Cluster Evaluate. If max(γk
n) < τn or if we are at a leaf node

(i.e. individual light), then we estimate the radiance using Equa-
tion 2. This includes shooting a shadow ray to the representa-
tive light if the material and geometric terms are not zero.

4. Refine. Otherwise we recurse down the tree and perform the
same tests on each of this node’s two children.

While the above rules cover most cases, a few refinements are
needed to prevent occasional artifacts (e.g., on glossy materials).
First, we disallow interpolation inside glossy highlights. The max-
imum possible value for a diffuse BRDF is 1/π . When computing
the material term for an interpolated impostor, if its BRDF value is
greater than 1/π , then the direction must lie inside the gloss lobe
of a material and we disallow interpolation for that node. Second,
cluster evaluation is only allowed for nodes that are at, or below, at
least one of the sample lightcuts. Nodes below all the sample light-
cuts do not use interpolation, since they have no good information
to interpolate. Third, if the result of a cluster evaluation is much
larger than expected, we recursively evaluate its children instead.

Image Blocks. The image is first divided into 16x16 pixel blocks
which do not share sample information. This keeps storage require-
ments low and allows easy parallel processing. To process each
block, we initially divide it into 4x4 pixel blocks but may divide it
further based on the following tests.

To compute a block, we compute samples at its corners, shoot eye
rays through its pixels, and test to see if the resulting points match
the corner samples. If using anti-aliasing, there will be multiple
eye rays per pixel. A set of eye rays is said to match if they all hit
surfaces with the same type of material and with surface normals
that differ by no more than some angle (e.g., 30 degrees). We also
use a cone test to detect possible local shadowing conditions that
require block subdivision (e.g., see Figure 12). For each eye ray,
we construct a cone starting at its intersection point and centered
around the local surface normal. If the intersection point for any
other eye ray lies within this cone, then the block fails the cone
test. The cone test uses true geometric normals and is unaffected
by shading effects such as bump maps or interpolated normals.

If the eye rays do not match and the block is bigger than a pixel,
then we split the block into four smaller blocks and try again. If
the block is pixel-sized, we relax the requirements, omit the cone
test, and only require that each eye ray match at least two nearby
samples. If there are still not enough matching samples, then we
compute a new sample at that eye ray.

Cones

Surface Normals

Passes Fails
Figure 12: Block cone test. (Right) fails because the upper two
points lie within the cone of the lower point. (Left) passes because
no points lie within the cones defined by the other points.

After block subdivision we compute a color for each remaining eye
ray using reconstruction cuts. For blocks larger than a pixel we use
the four corners as the set of nearby samples and use image-space
bilinear interpolation weights when interpolating impostors. Eye
rays within pixel-sized blocks use their set of matching samples
and interpolation weights proportional to the world-space inverse
distance squared between the surface point and the sample points.

8 Reconstruction Cut Results

In this section we present some results of applying the reconstruc-
tion cuts technique to our scenes. Result images and statistics
are shown in Figure 13. These results are adaptively anti-aliased
[Painter and Sloan 1989] using between 5 and 50 eye rays per pixel.
The sparse samples are computed using lightcuts with the same pa-
rameters as in Section 6. Most of the shading is done using recon-
struction cuts that interpolate intelligently between the samples.

By exploiting spatial coherence, reconstruction cuts can shade
points using far fewer shadow rays than lightcuts. While a lightcut
requires a few hundred shadow rays, on average a reconstruction cut
uses less than fourteen in our results. In fact, most of our shadow
rays are used for computing the sparse samples (lightcuts) even
though there are 15-25 times more reconstruction cuts. This al-
lows us to generate much higher quality images, with anti-aliasing,
at a much lower cost than with lightcuts alone. For the same size
images, the results are both higher quality and have similar or lower
cost than those in Section 6. Moreover for larger images, rendering
cost increases more slowly than the number of pixels.

Samples are computed at the corners of adaptively sized image
blocks (between 4x4 and 1x1 pixels in size) and occasionally within
a pixel when needed (shown as 1x1+ in red). As shown for the tem-
ple image, most of the pixels in all images lie within 4x4 blocks.
An average of less than one sample per pixel is needed even with
anti-aliasing requiring multiple eye rays per pixel. We could al-
low larger blocks (e.g., 8x8) but making the samples even sparser
where they are already sparse has less benefit and can be counter-
productive because reconstruction cut cost is strongly related to the
similarity of the nearby samples.

Because the accuracy of reconstruction cuts relies on having nearby
samples that span the local lighting conditions, there is a possibil-
ity of missing small features in between samples. While this does
happen occasionally, it is rarely problematic. For example in a few
places, the interpolation smooths over the grooves in the pillars of
the temple, but the errors are quite small and we have found that
people have great difficulty in noticing them. Future improvements
in the block refinement rules could fix these errors.

A Metropolis solution and its magnified (5x) differences with our
result are shown in Figure 14. Metropolis [Veach and Guibas 1997]
is considered the best and fastest of the general purpose Monte
Carlo solvers. Its result took 13 times longer to compute than ours
and still contains some visible noise. The main differences are the
noise in the Metropolis solution and some corner darkening in our
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Kitchen Tableau Temple (Reconstruction Block Size)

Grand Central Temple

Model Point Per Pixel Averages Avg Shadow Rays Per Pixel Avg Per Reconstruction Cut Image Time
Lights Eye Rays Samples Samples Recon Cuts Shadow Rays Interpolations 1280x960 640x480

Kitchen 59672 5.4 0.29 143 50 9.1 14.4 672s 257s
Tableau 13000 5.4 0.23 50 41 10.6 17.8 298s 111s
Grand Central 143464 6.9 0.46 225 93 13.3 11.5 1177s 454s
Temple 505064 5.5 0.25 91 52 9.4 6.0 511s 189s
Bigscreen 639528 5.3 0.25 64 24 4.6 15.0 260s 98s

Figure 13: Reconstruction cut results for 1280x960 images (except where noted) of our scenes. Images are anti-aliased using 5 to 50 eye
rays per pixel adaptively. Samples (lightcuts from Figure 9) are computed sparsely and most shading is computed using reconstruction cuts
to interpolate intelligently. Reconstruction cuts are much less expensive and require many fewer shadow rays than lightcuts. Bigscreen image
is shown in Figure 1.

result. The latter is due to instant radiosity not reproducing very
short range indirect illumination effects.

9 Conclusion

We have presented lightcuts as a new scalable unifying framework
for illumination. The core component is a strongly sublinear al-
gorithm for computing the illumination from thousands or millions
of point lights using a perceptual error metric and conservative per
cluster error bounds. We have shown that it can greatly reduce the
number of shadow rays, and hence cost, needed to compute illumi-
nation from a variety of sources including area lights, HDR environ-
ment maps, sun/sky models, and indirect illumination. Moreover it
can handle very complex scenes with detailed geometry and glossy
materials. We have also presented reconstruction cuts that further
speed shading by exploiting coherence in the illumination.

There are many ways in which this work can be improved and ex-

Metropolis Solution 5 x Difference
Figure 14: Comparison with metropolis image for temple.

tended. For example, extending to additional illumination types
(e.g., indirect components not handled by instant radiosity), inte-
grating more types of light sources including non-diffuse sources
and spot lights, developing bounds for more BRDF types, more
formal analysis of lightcuts stochastic error, further refinement of
the reconstruction cut rules to exploit more coherence, and adding
conservative visibility bounds to further accelerate lightcuts.
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A Spherical Lights
Any diffuse area light can be simulated using oriented lights on its surface.
For spherical lights, we have developed a better technique that simulates
them using omni lights (which are a better match for far field emission).
Placing omni lights on the surface of the sphere would incorrectly make it
appear too bright near its silhouette as compared to its center. Similarly
a uniform distribution inside the volume of the sphere would exhibit the
reverse problem. However, by choosing the right volume distribution inside
the sphere, we can correctly match the emission of a spherical light.

d(x) =
1

π2R2
√

R2− r2(x)
(7)

The normalized point distribution d(x) is defined inside a sphere of radius
R where r2(x) is the squared distance from the sphere’s center. The beauty
of this distribution is that it projects to a uniform distribution across the
apparent solid angle of the sphere when viewed from any position outside
the sphere, which is exactly the property we need. We also need a way to
generate random points according to this distribution. Given three uniformly
distributed random numbers, ξ1,ξ2,ξ3, in the range [0,1] we can compute
points with the right distribution for a sphere centered at the origin using:

x = R
√

ξ1 cos(2πξ2)

y = R
√

ξ1 sin(2πξ2)

z =
√

R2− x2− y2 sin(π(ξ3−1/2))

(8)

The omni lights generated from spherical lights behave exactly like normal
omni lights except that when computing their visibility factors, they can
only be occluded by geometry outside the sphere (i.e. their shadow rays
terminate at the surface of the sphere).


