Fast Agglomerative Clustering for Rendering

Bruce Walter, Kavita Bala,

Cornell University

Milind Kulkarni, Keshav Pingali

University of Texas, Austin

Clustering Tree

- Hierarchical data representation
 - Each node represents all elements in its subtree
 - Enables fast queries on large data
 - Tree quality = average query cost

- Examples
 - Bounding Volume Hierarchy (BVH) for ray casting
 - Light tree for Lightcuts

- Agglomerative (bottom-up)
 - Start with leaves and aggregate

- Divisive (top-down)
 - Start root and subdivide

- Agglomerative (bottom-up)
 - Start with leaves and aggregate

- Divisive (top-down)
 - Start root and subdivide

- Agglomerative (bottom-up)
 - Start with leaves and aggregate

- Divisive (top-down)
 - Start root and subdivide

- Agglomerative (bottom-up)
 - Start with leaves and aggregate

- Divisive (top-down)
 - Start root and subdivide

- Agglomerative (bottom-up)
 - Start with leaves and aggregate

- Divisive (top-down)
 - Start root and subdivide

- Agglomerative (bottom-up)
 - Start with leaves and aggregate

- Divisive (top-down)
 - Start root and subdivide

- Agglomerative (bottom-up)
 - Start with leaves and aggregate

- Divisive (top-down)
 - Start root and subdivide

- Agglomerative (bottom-up)
 - Start with leaves and aggregate

- Divisive (top-down)
 - Start root and subdivide

Conventional Wisdom

- Agglomerative (bottom-up)
 - Best quality and most flexible
 - Slow to build $O(N^2)$ or worse?

- Divisive (top-down)
 - Good quality
 - Fast to build

Goal: Evaluate Agglomerative

- Is the build time prohibitively slow?
 - No, can be almost as fast as divisive
 - Much better than $O(N^2)$ using two new algorithms
- Is the tree quality superior to divisive?
 - Often yes, equal to 35% better in our tests

Related Work

- Agglomerative clustering
 - Used in many different fields including data mining, compression, and bioinformatics [eg, Olson 95, Guha et al. 95, Eisen et al. 98, Jain et al. 99, Berkhin 02]
- Bounding Volume Hierarchies (BVH)
 - [eg, Goldsmith and Salmon 87, Wald et al. 07]
- Lightcuts
 - [eg, Walter et al. 05, Walter et al. 06, Miksik 07, Akerlund et al. 07, Herzog et al. 08]

Overview

- How to implement agglomerative clustering
 - Naive O(N³) algorithm
 - Heap-based algorithm
 - Locally-ordered algorithm
- Evaluating agglomerative clustering
 - Bounding volume hierarchies
 - Lightcuts
- Conclusion

Agglomerative Basics

Inputs

- N elements
- Dissimilarity function, d(A,B)

Definitions

- A cluster is a set of elements
- Active cluster is one that is not yet part of a larger cluster

Greedy Algorithm

Combine two most similar active clusters and repeat

Dissimilarity Function

- d(A,B): pairs of clusters -> real number
 - Measures "cost" of combining two clusters
 - Assumed symmetric but otherwise arbitrary
 - Simple examples:
 - Maximum distance between elements in A+B
 - Volume of convex hull of A+B
 - Distance between centroids of A and B

Naive O(N³) Algorithm

```
Repeat {
```

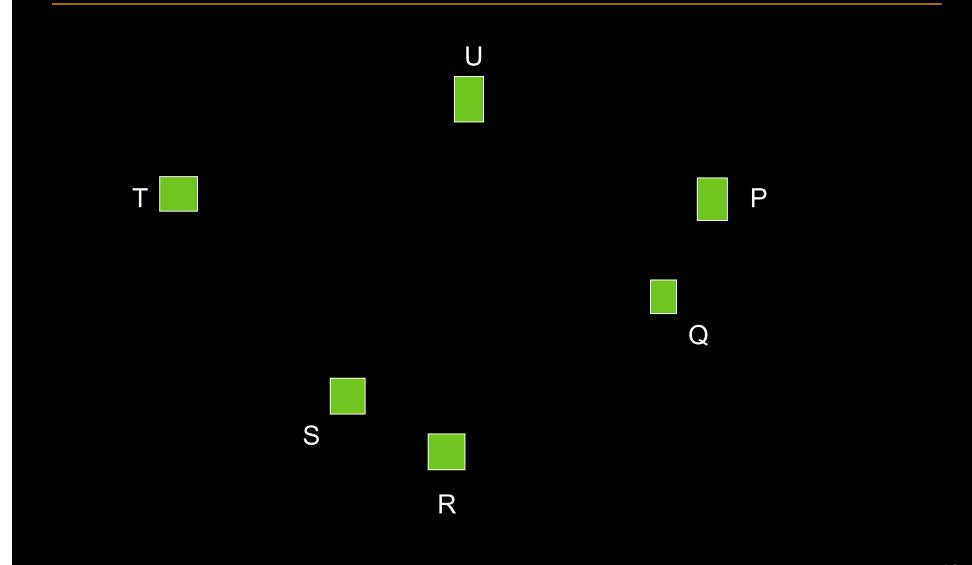
Evaluate all possible active cluster pairs <A,B>

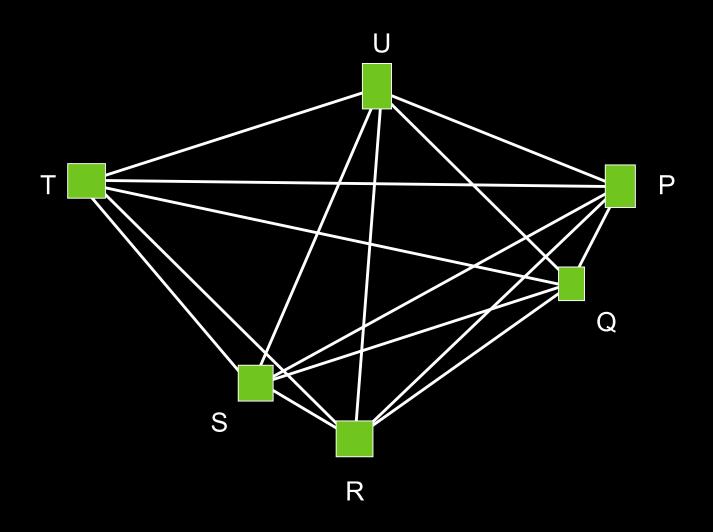
Select one with smallest d(A,B) value

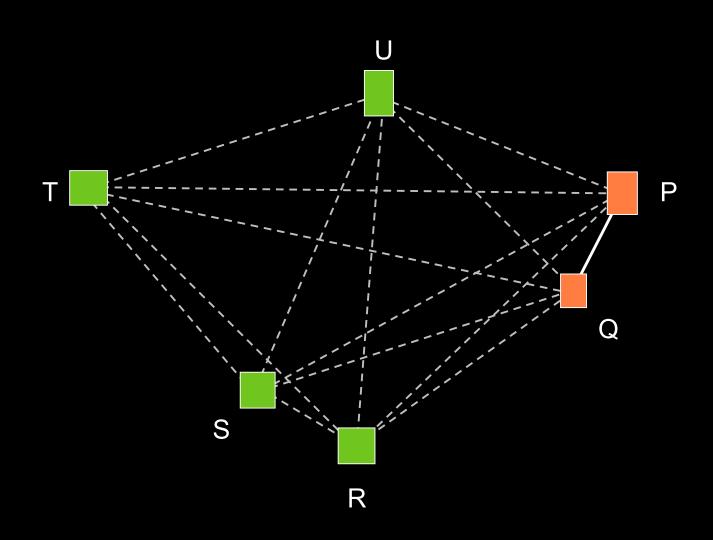
Create new cluster C = A+B

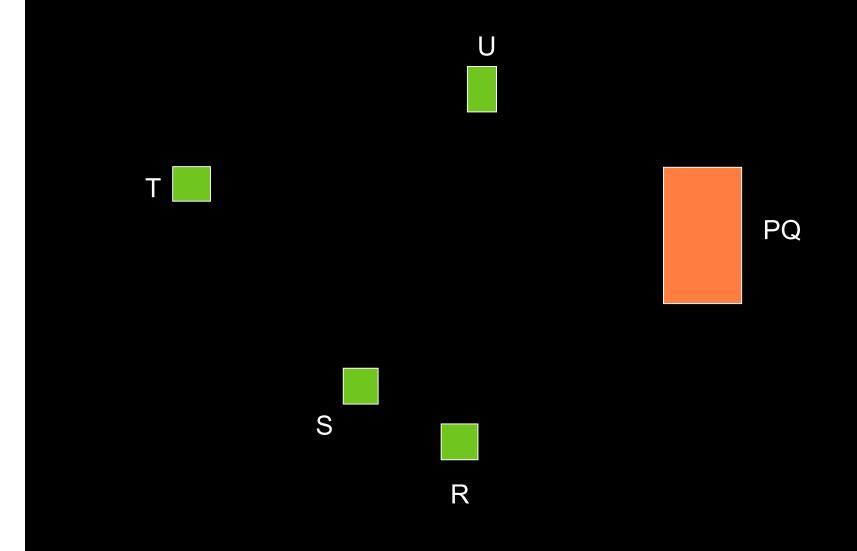
} until only one active cluster left

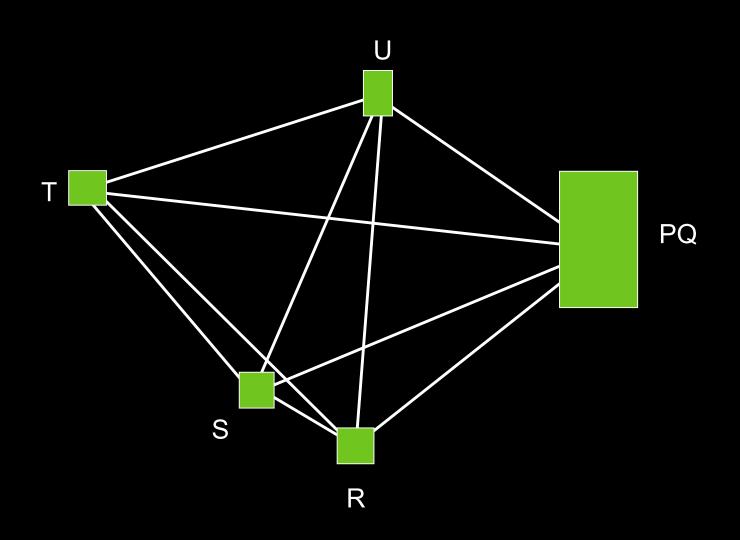
Simple to write but very inefficient!

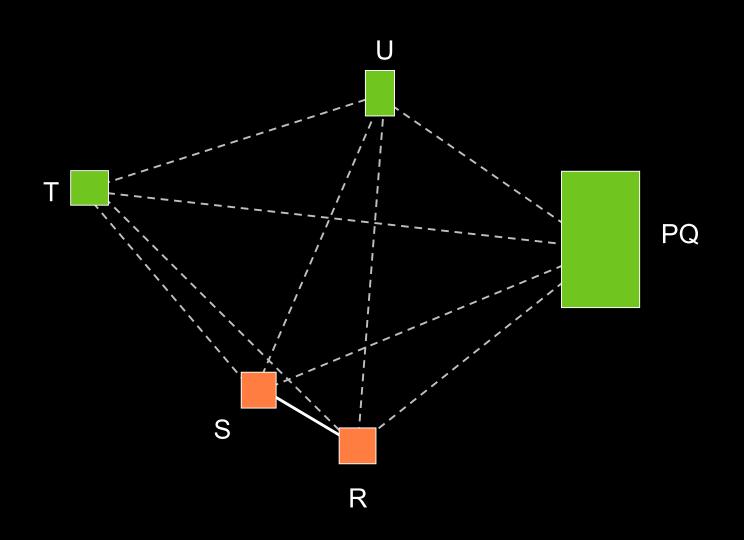


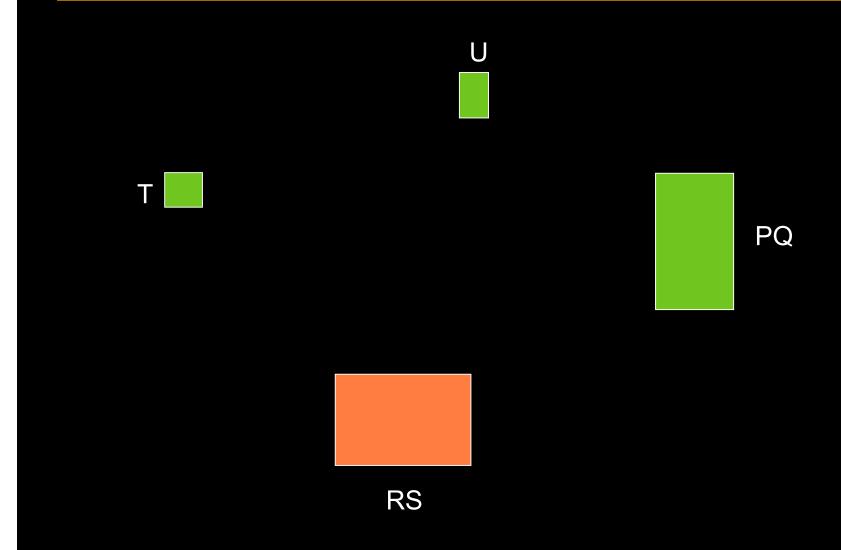












Acceleration Structures

KD-Tree

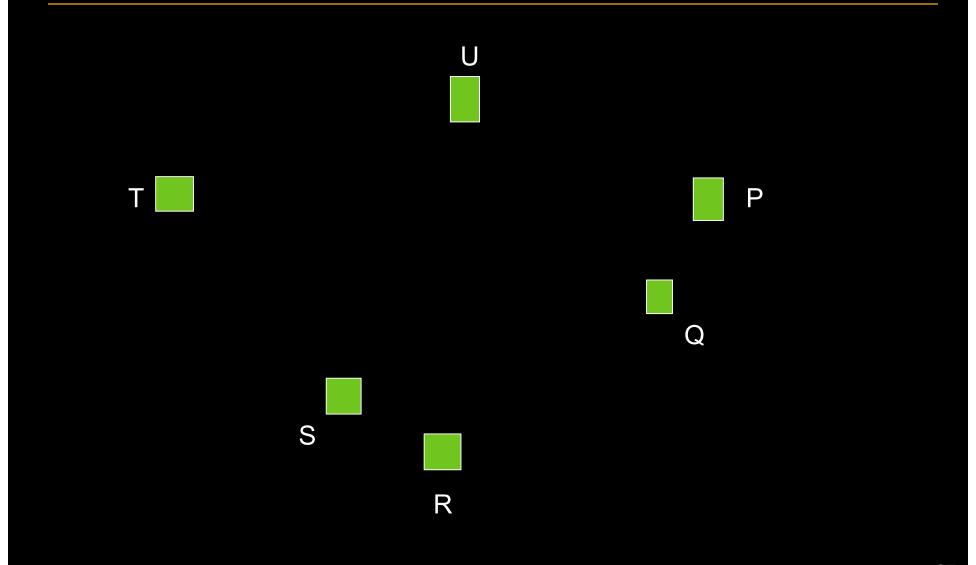
- Finds best match for a cluster in sub-linear time
- Is itself a cluster tree

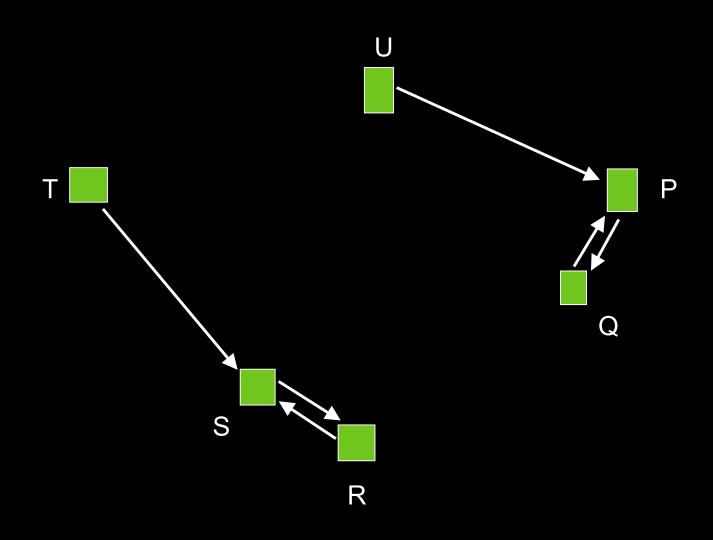
Heap

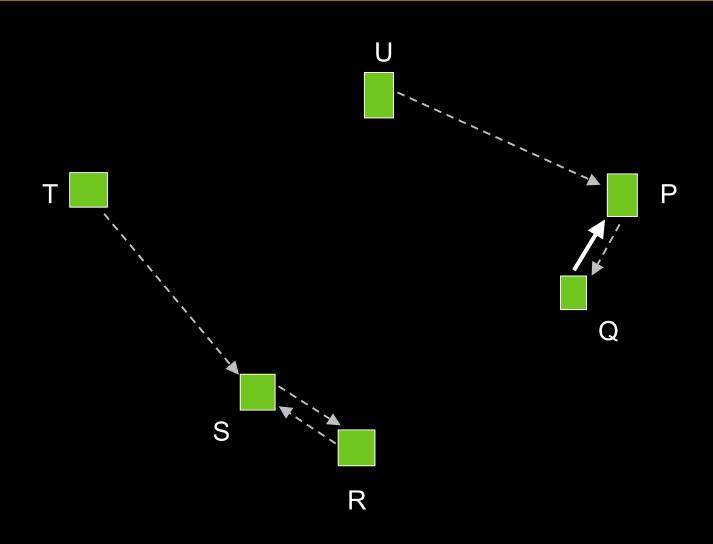
- Stores best match for each cluster
- Enables reuse of partial results across iterations
- Lazily updated for better performance

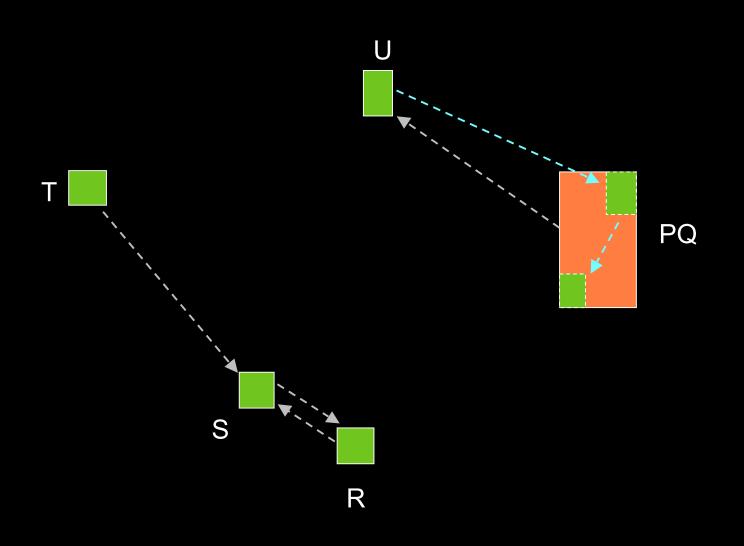
Heap-based Algorithm

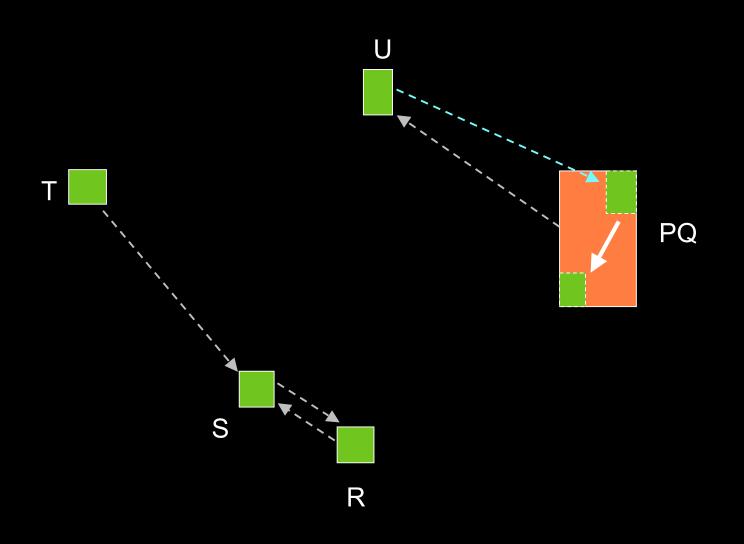
```
Initialize KD-Tree with elements
Initialize heap with best match for each element
Repeat {
   Remove best pair <A,B> from heap
   If A and B are active clusters {
      Create new cluster C = A+B
      Update KD-Tree, removing A and B and inserting C
      Use KD-Tree to find best match for C and insert into heap
   } else if A is active cluster {
      Use KD-Tree to find best match for A and insert into heap
} until only one active cluster left
```

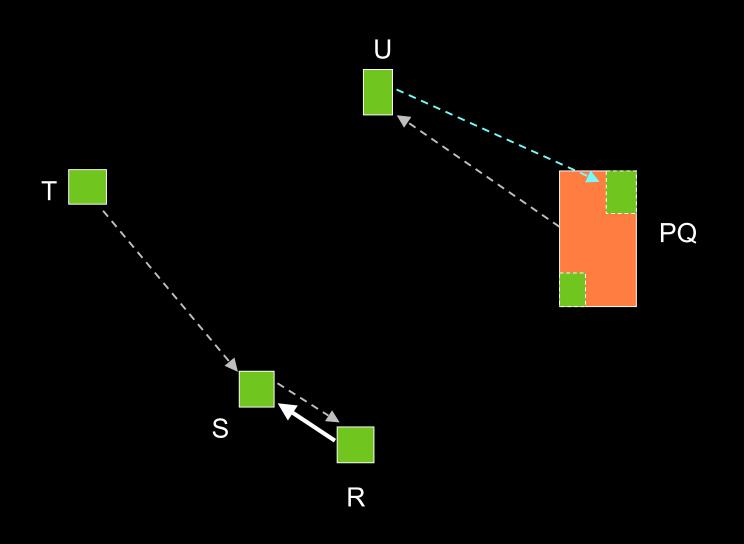


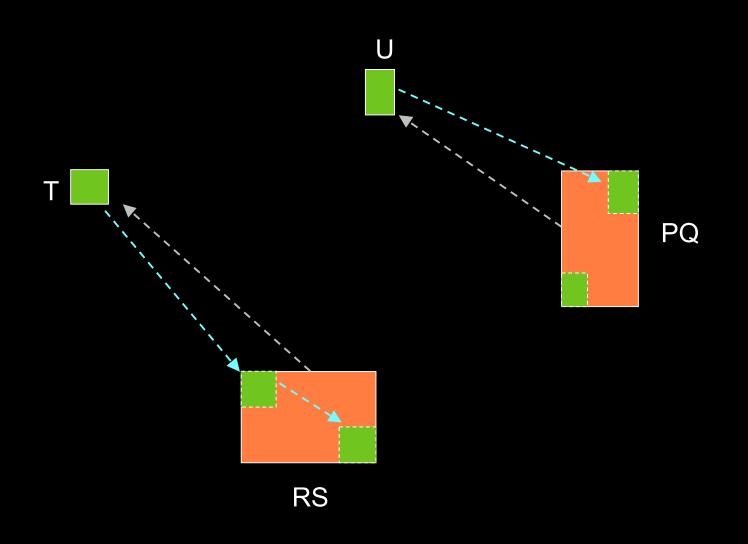






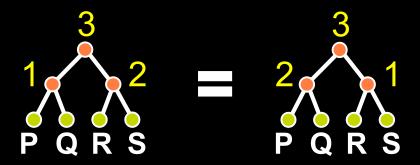






Locally-ordered Insight

Can build the exactly same tree in different order

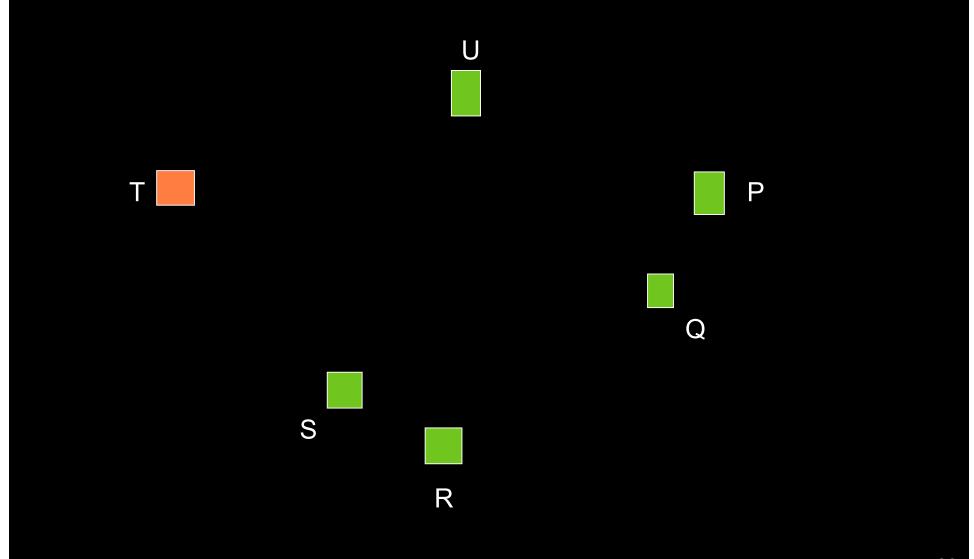


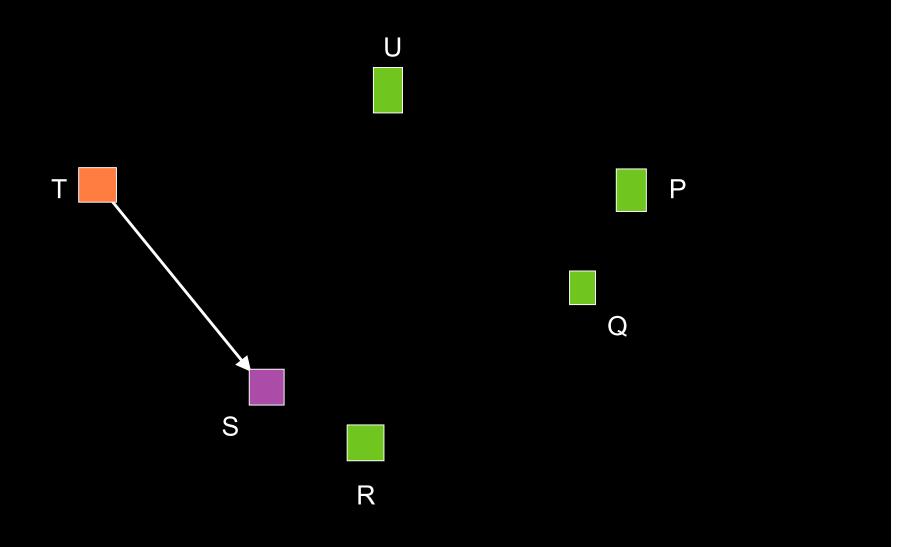
- How can we use this insight?
 - If d(A,B) is non-decreasing, meaning $d(A,B) \le d(A,B+C)$
 - And A and B are each others best match
 - Greedy algorithm must cluster A and B eventually
 - So cluster them together immediately

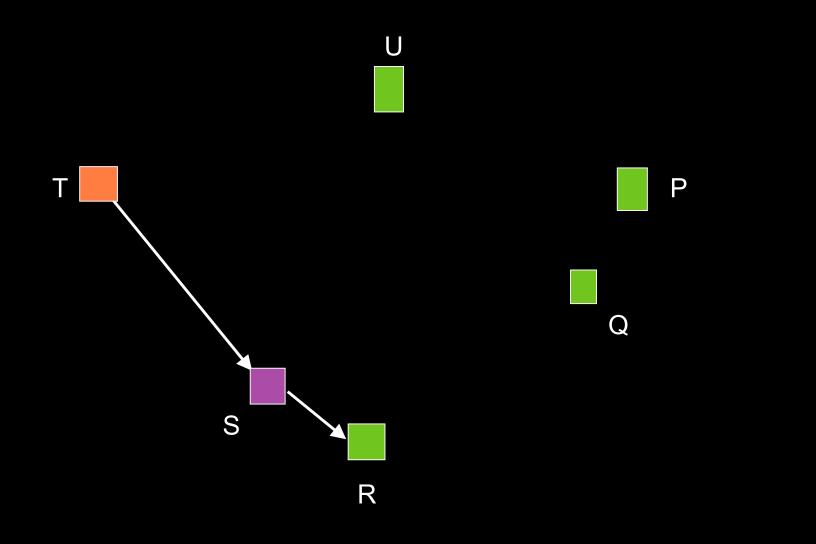
Locally-ordered Algorithm

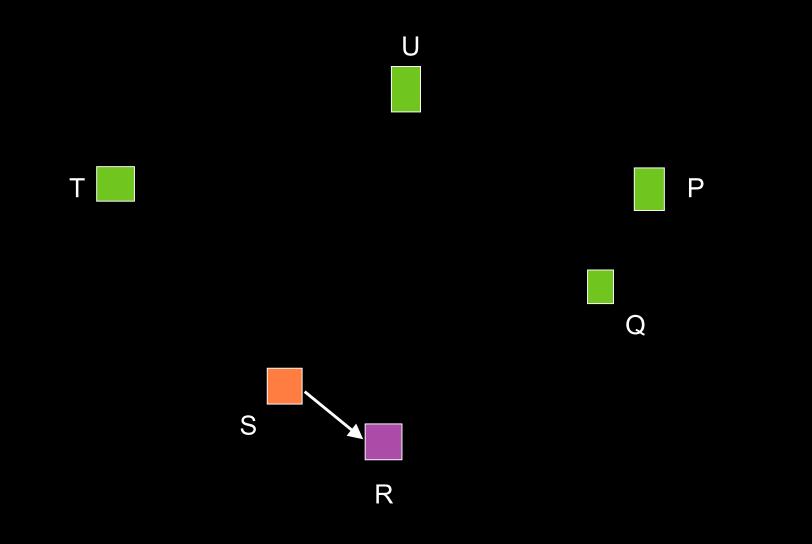
```
Initialize KD-Tree with elements
Select an element A and find its best match B using KD-Tree
Repeat {
    Let C = best match for B using KD-Tree
    If d(A,B) == d(B,C) \{ //usually means A == C
      Create new cluster D = A + B
      Update KD-Tree, removing A and B and inserting D
      Let A = D and B = best match for D using KD-Tree
   } else {
      Let A = B and B = C
} until only one active cluster left
```

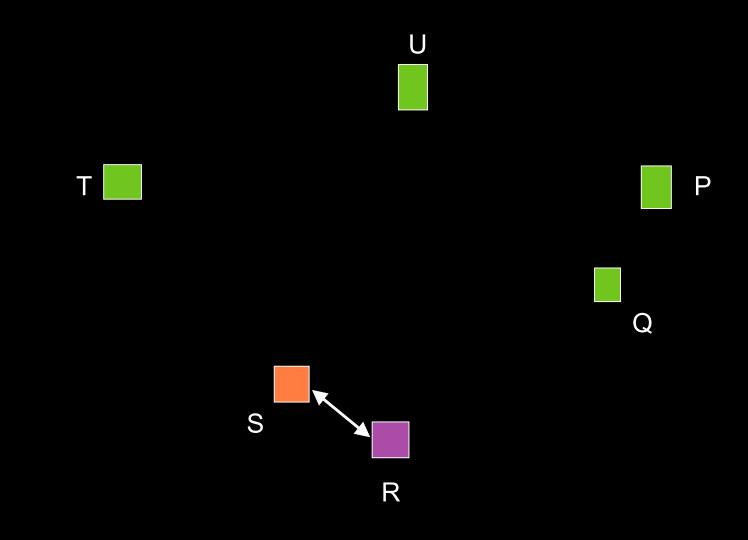
Locally-ordered Algorithm Example

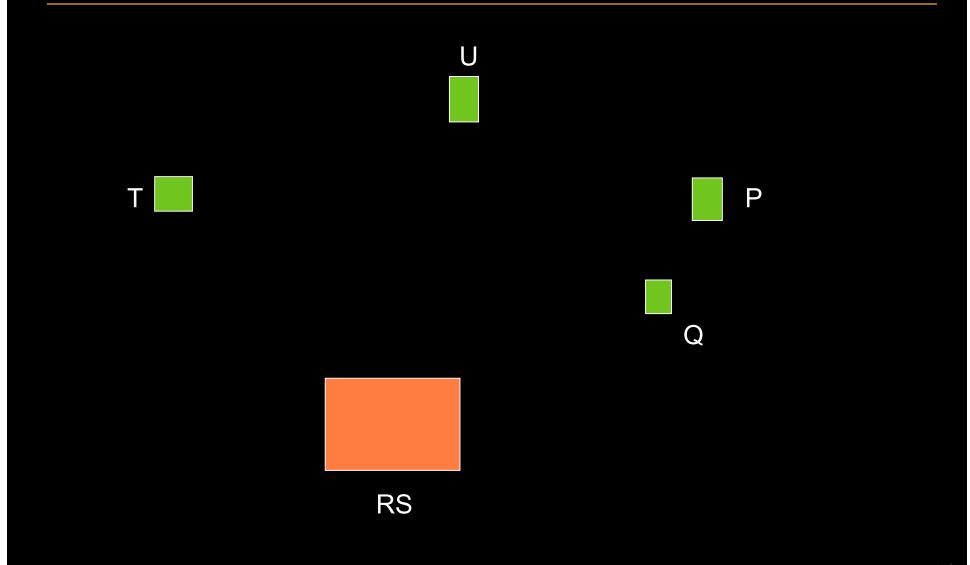


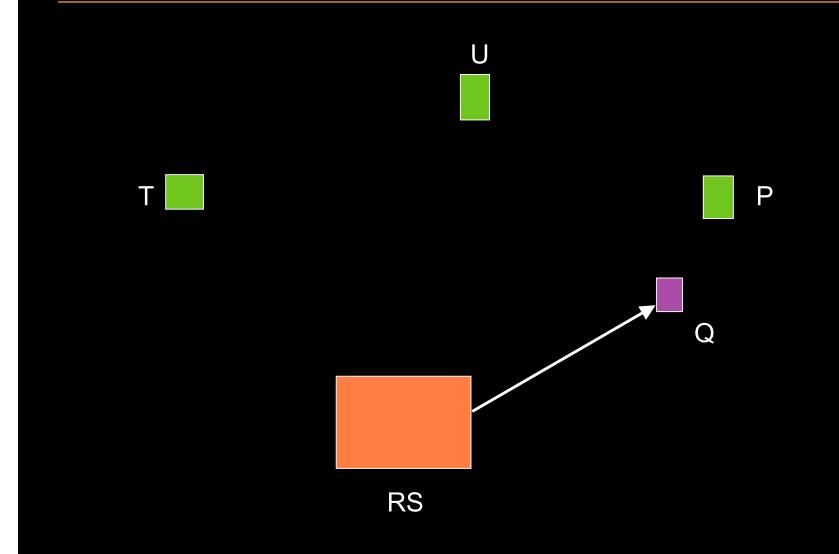


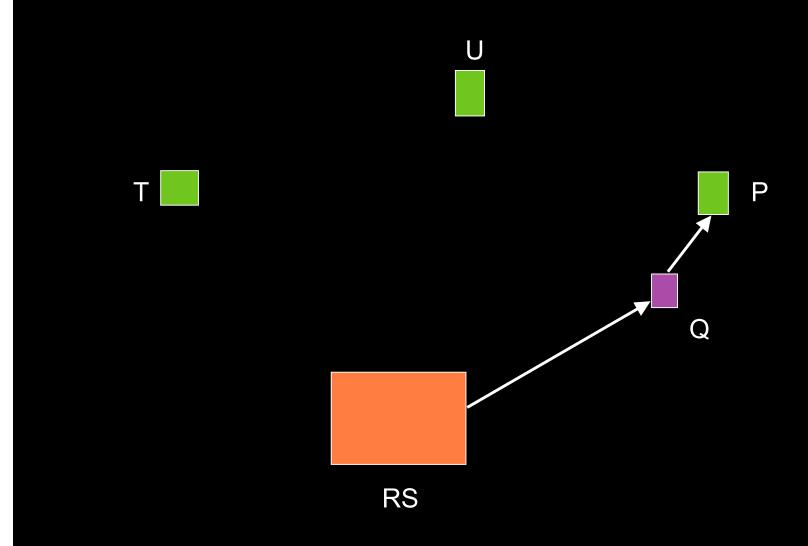


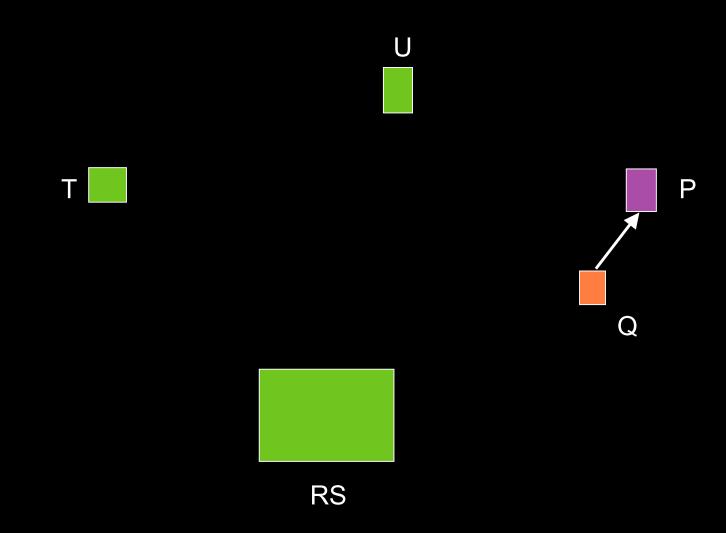


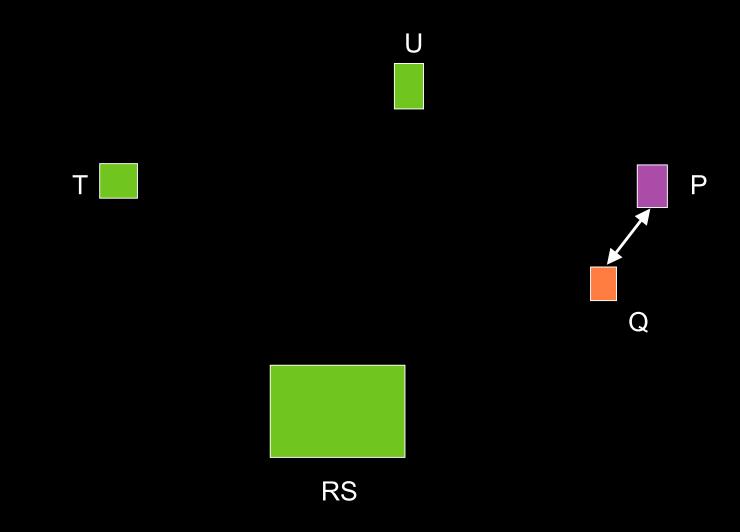


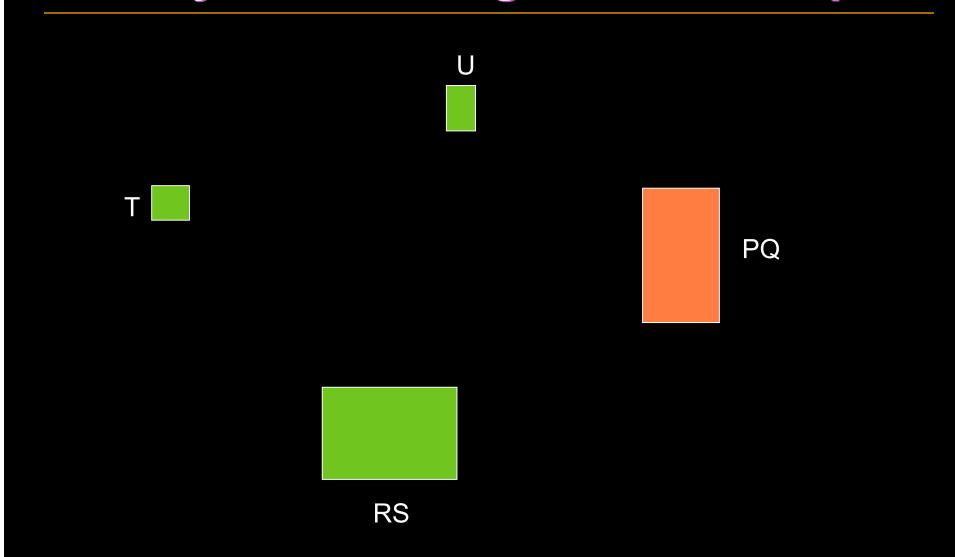








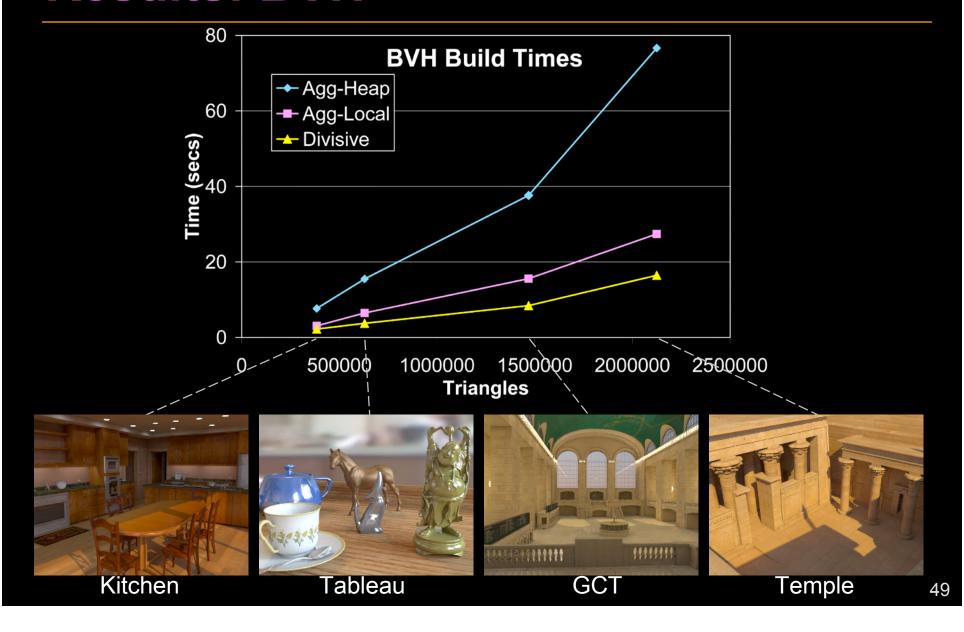




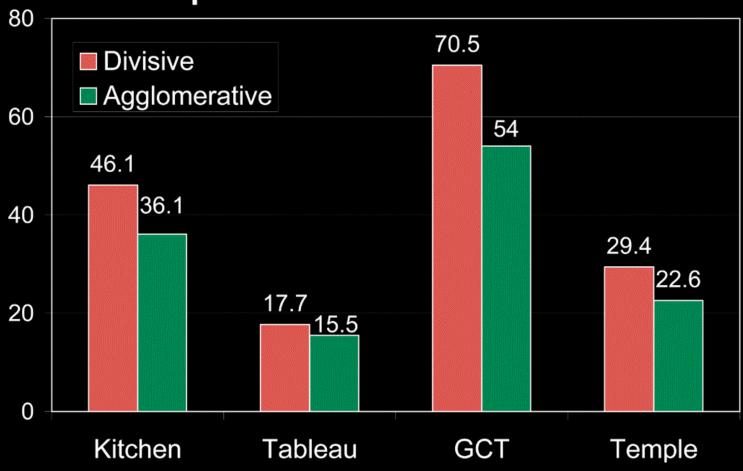
Locally-ordered Algorithm

- Roughly 2x faster than heap-based algorithm
 - Eliminates heap
 - Better memory locality
 - Easier to parallelize
 - But d(A,B) must be non-decreasing

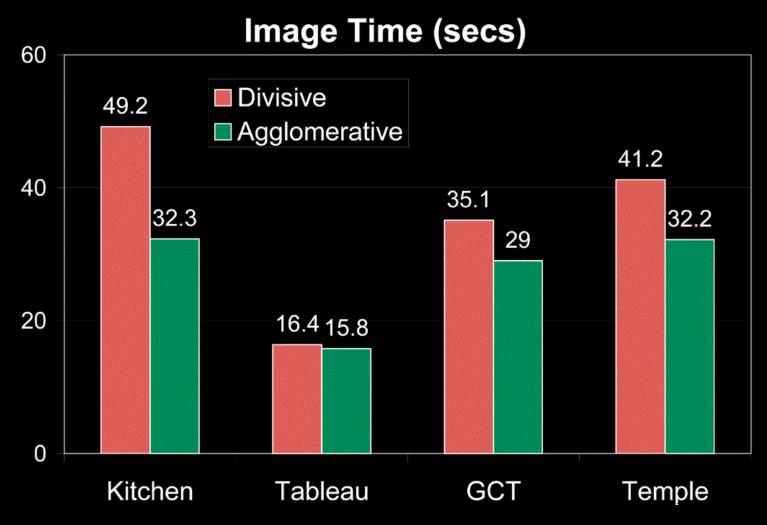
- BVH Binary tree of axis-aligned bounding boxes
- Divisive [from Wald 07]
 - Evaluate 16 candidate splits along longest axis per step
 - Surface area heuristic used to select best one
- Agglomerative
 - -d(A,B) = surface area of bounding box of A+B
- Used Java 1.6JVM on 3GHz Core2 with 4 cores
 - No SIMD optimizations, packets tracing, etc.



Expected Random Line Cost



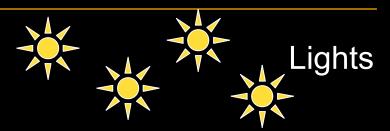
Surface area heuristic with triangle cost = 1 and box cost = 0.5

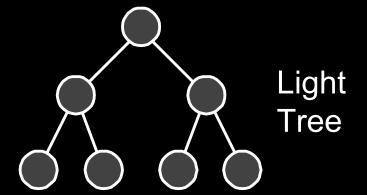


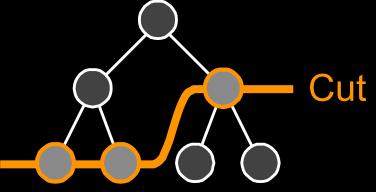
1280x960 Image with 16 eye and 16 shadow rays per pixel, without build time

Lightcuts Key Concepts

- Unified representation
 - Convert all lights to points
 - ~200,000 in examples
- Build light tree
 - Originally agglomerative
- Adaptive cut
 - Partitions lights into clusters
 - Cutsize = # nodes on cut



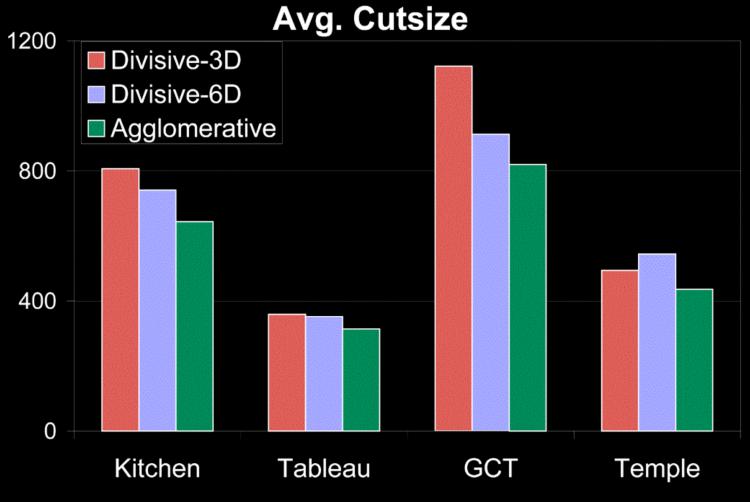




Lightcuts

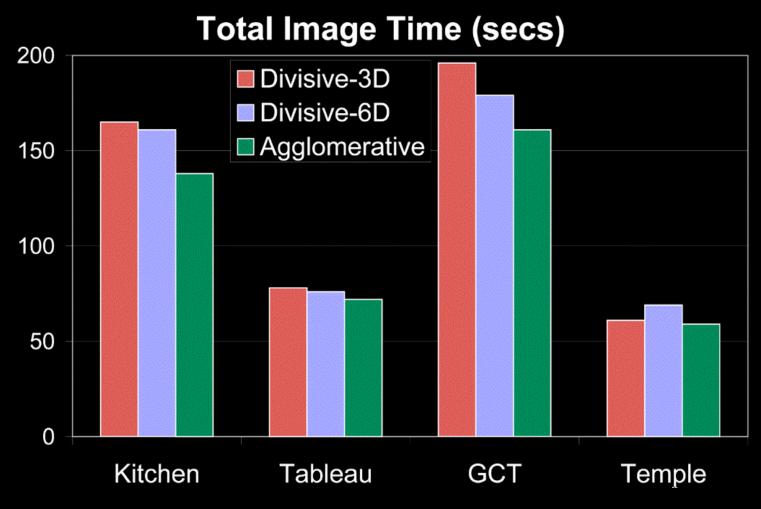
- Divisive
 - Split middle of largest axis
 - Two versions
 - 3D considers spatial position only
 - 6D considers position and direction
- Agglomerative
 - New dissimilarity function, d(A,B)
 - Considers position, direction, and intensity

Results: Lightcuts



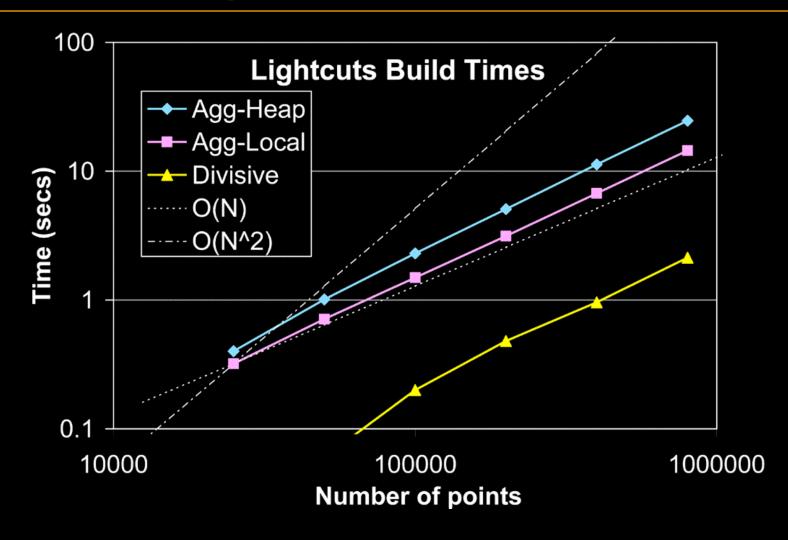
640x480 image with 16x antialiasing and ~200,000 point lights

Results: Lightcuts



640x480 image with 16x antialiasing and ~200,000 point lights

Results: Lightcuts



Kitchen model with varying numbers of indirect lights

Conclusions

- Agglomerative clustering is a viable alternative
 - Two novel fast construction algorithms
 - Heap-based algorithm
 - Locally-ordered algorithm
 - Tree quality is often superior to divisive
 - Dissimilarity function d(A,B) is very flexible
- Future work
 - Find more applications that can leverage this flexibility

Acknowledgements

- Modelers
 - Jeremiah Fairbanks, Moreno Piccolotto, Veronica Sundstedt & Bristol Graphics Group,
- Support
 - NSF, IBM, Intel, Microsoft