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Clustering TreeClustering Tree

• Hierarchical data representation

– Each node represents all elements in its subtree

– Enables fast queries on large data

– Tree quality = average query cost

• Examples

– Bounding Volume Hierarchy (BVH) for ray casting

– Light tree for Lightcuts
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Tree Building StrategiesTree Building Strategies

• Agglomerative (bottom-up)

– Start with leaves and aggregate

• Divisive (top-down)

– Start root and subdivide
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Conventional WisdomConventional Wisdom

• Agglomerative (bottom-up)

– Best quality and most flexible

– Slow to build - O(N2) or worse?

• Divisive (top-down)

– Good quality

– Fast to build
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Goal: Evaluate AgglomerativeGoal: Evaluate Agglomerative

• Is the build time prohibitively slow?

– No, can be almost as fast as divisive

– Much better than O(N2) using two new algorithms

• Is the tree quality superior to divisive?

– Often yes, equal to 35% better in our tests
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Related WorkRelated Work
• Agglomerative clustering

– Used in many different fields including data mining,
compression, and bioinformatics [eg, Olson 95,
Guha et al. 95, Eisen et al. 98, Jain et al. 99, Berkhin 02]

• Bounding Volume Hierarchies (BVH)
– [eg, Goldsmith and Salmon 87, Wald et al. 07]

• Lightcuts
– [eg, Walter et al. 05, Walter et al. 06, Miksik 07, Akerlund

et al. 07, Herzog et al. 08]
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OverviewOverview

• How to implement agglomerative clustering

– Naive O(N3) algorithm

– Heap-based algorithm

– Locally-ordered algorithm

• Evaluating agglomerative clustering

– Bounding volume hierarchies

– Lightcuts

• Conclusion
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Agglomerative BasicsAgglomerative Basics

• Inputs

– N elements

– Dissimilarity function, d(A,B)

• Definitions

– A cluster is a set of elements

– Active cluster is one that is not yet part of a larger cluster

• Greedy Algorithm

– Combine two most similar active clusters and repeat
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Dissimilarity FunctionDissimilarity Function

• d(A,B): pairs of clusters −> real number

– Measures “cost” of combining two clusters

– Assumed symmetric but otherwise arbitrary

– Simple examples:

• Maximum distance between elements in A+B

• Volume of convex hull of A+B

• Distance between centroids of A and B
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Naive O(N3) AlgorithmNaive O(N3) Algorithm

Repeat {

Evaluate all possible active cluster pairs <A,B>

Select one with smallest d(A,B) value

Create new cluster C = A+B

} until only one active cluster left

• Simple to write but very inefficient!
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Naive O(N3) Algorithm ExampleNaive O(N3) Algorithm Example
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Acceleration StructuresAcceleration Structures

• KD-Tree

– Finds best match for a cluster in sub-linear time

– Is itself a cluster tree

• Heap

– Stores best match for each cluster

– Enables reuse of partial results across iterations

– Lazily updated for better performance
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Heap-based AlgorithmHeap-based Algorithm

Initialize KD-Tree with elements

Initialize heap with best match for each element

Repeat {
Remove best pair <A,B> from heap

If A and B are active clusters {

Create new cluster C = A+B

Update KD-Tree, removing A and B and inserting C

Use KD-Tree to find best match for C and insert into heap

} else if A is active cluster {

Use KD-Tree to find best match for A and insert into heap

}

} until only one active cluster left
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Locally-ordered InsightLocally-ordered Insight

• Can build the exactly same tree in different order

• How can we use this insight?

– If d(A,B) is non-decreasing, meaning d(A,B) <= d(A,B+C)

– And A and B are each others best match

– Greedy algorithm must cluster A and B eventually

– So cluster them together immediately
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Locally-ordered AlgorithmLocally-ordered Algorithm

Initialize KD-Tree with elements

Select an element A and find its best match B using KD-Tree

Repeat {

Let C = best match for B using KD-Tree

If d(A,B) == d(B,C) {     //usually means A==C

Create new cluster D = A+B

Update KD-Tree, removing A and B and inserting D

Let A = D and B = best match for D using KD-Tree

} else {

Let A = B and B = C

}

} until only one active cluster left
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Locally-ordered AlgorithmLocally-ordered Algorithm

• Roughly 2x faster than heap-based algorithm

– Eliminates heap

– Better memory locality

– Easier to parallelize

– But d(A,B) must be non-decreasing
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Results: BVHResults: BVH

• BVH – Binary tree of axis-aligned bounding boxes

• Divisive [from Wald 07]

– Evaluate 16 candidate splits along longest axis per step

– Surface area heuristic used to select best one

• Agglomerative

– d(A,B) = surface area of bounding box of A+B

• Used Java 1.6JVM on 3GHz Core2 with 4 cores

– No SIMD optimizations, packets tracing, etc.



49

Results: BVHResults: BVH

Kitchen Tableau GCT Temple
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Results: BVHResults: BVH

Surface area heuristic with triangle cost = 1 and box cost = 0.5
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Results: BVHResults: BVH

1280x960 Image with 16 eye and 16 shadow rays per pixel, without build time
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Lightcuts Key ConceptsLightcuts Key Concepts

• Unified representation

– Convert all lights to points

• ~200,000 in examples

• Build light tree

– Originally agglomerative

• Adaptive cut

– Partitions lights into clusters

– Cutsize = # nodes on cut

Cut

Light
Tree

Lights
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LightcutsLightcuts

• Divisive

– Split middle of largest axis

– Two versions

• 3D – considers spatial position only

• 6D – considers position and direction

• Agglomerative

– New dissimilarity function, d(A,B)

• Considers position, direction, and intensity
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Results: LightcutsResults: Lightcuts

640x480 image with 16x antialiasing and ~200,000 point lights 
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640x480 image with 16x antialiasing and ~200,000 point lights 
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Results: LightcutsResults: Lightcuts

Kitchen model with varying numbers of indirect lights
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ConclusionsConclusions

• Agglomerative clustering is a viable alternative

– Two novel fast construction algorithms

• Heap-based algorithm

• Locally-ordered algorithm

– Tree quality is often superior to divisive

– Dissimilarity function d(A,B) is very flexible

• Future work

– Find more applications that can leverage this flexibility
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