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Abstract

In this paper we introduce a new perceptual metric for efficient,
high quality, global illumination rendering. The metric is based on a
rendering-by-components framework in which the direct, and indi-
rect diffuse, glossy, and specular light transport paths are separately
computed and then composited to produce an image. The metric
predicts the perceptual importances of the computationally expen-
sive indirect illumination components with respect to image qual-
ity. To develop the metric we conducted a series of psychophysical
experiments in which we measured and modeled the perceptual im-
portances of the components. An important property of this new
metric is that it predicts component importances from inexpensive
estimates of the reflectance properties of a scene, and therefore adds
negligible overhead to the rendering process. This perceptual met-
ric should enable the development of an important new class of ef-
ficient global-illumination rendering systems that can intelligently
allocate limited computational resources, to provide high quality
images at interactive rates.

CR Categories: I.3.7 [Three-Dimensional Graphics and Real-
ism];

Keywords: perception, global illumination, reflection components

1 Introduction

Global illumination effects, while necessary for improved realism,
are often omitted because of their high cost. Traditionally, global
illumination simulations have only been available from computa-
tionally intensive off-line systems or low quality interactive alter-
natives. The goal of our research is to enable the production of
high quality global illumination renderings at interactive rates by
approaching the rendering problem from a perceptual standpoint.

We propose that an efficient approach to providing global illu-
mination effects is to split up the global illumination simulation
into direct and indirect components. By quantifying the perceptual
importances of these components, we can construct a perceptual
quality metric that can be used to efficiently allocate computational
resources and maximize image quality within system constraints.

To develop this new perceptual metric, we first conduct a series
of experiments in which subjects rank the quality of global illumi-
nation images rendered using different combinations of direct and
indirect components. Using the data provided by these experiments,
we compute the perceptual importance of each of the components.
We then construct a model that can predict these importance values
by measuring the physical reflectance properties of the objects vis-
ible in a particular image. Finally we formulate the perceptual met-
ric that can be used to predict the visual quality of different global
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Figure 1: Office and kitchen scenes

illumination renderings from knowledge of the physical scene char-
acteristics and the illumination components used in the rendering.

We believe this new metric will enable the development of an im-
portant new class of efficient global-illumination rendering systems
that can intelligently allocate computational resources between the
components of the global illumination simulation to provide high
quality renderings at interactive rates.

2 Related Work

Perception has become an important research topic in computer
graphics, especially in the area of rendering. Much of the work on
perceptually-based rendering has focused on two goals: 1) develop-
ing perceptual metrics that can be used to establish stopping criteria
for high quality rendering systems [Mitchell 1987; Gaddipatti et al.
1997; Gibson and Hubbold 1997; Prikryl and Purgathofer 1999;
Walter et al. 1997; Neumann et al. 1998; Hedley et al. 1997; Tam-
storf and Jensen 1997; Ramasubramanian et al. 1999; Walter et al.
2002] and 2) using perceptual metrics to optimally manage resource
allocation for efficient rendering algorithms [Meyer and Liu 1992;
Bolin and Meyer 1995; Bolin and Meyer 1998; Myszkowski 1998;
Myszkowski et al. 2000; Myszkowski et al. 2001; Gibson and Hub-
bold 2000; Haber et al. 2001; Volevich et al. 1999; Yee et al. 2001;
Tole et al. 2002; Dumont et al. 2003].

We share this community’s interest in taking advantage of per-
ception to improve the quality and efficiency of rendering algo-
rithms, but our perspective is unique in that we will start by tak-
ing a rendering-by-components approach to the global illumina-
tion problem. The rendering-by-components strategy itself is not
new [Shirley 1990], but to our knowledge there has been little work
to develop perceptual metrics for component-based rendering.

3 Perceptual illumination components

In global illumination rendering, the radiance of a pixel in the ren-
dered image can be determined by finding the intersection between
the pixel’s view ray and a surface, and calculating the sum of the en-
ergy emitted by the surface and the energy reflected in the direction
of the view ray. This can be expressed as:

Lout(x) = Lemission +
∫ incoming

directions Lin ·Brdf() (1)



Figure 2: Viewpoints tested in the office and kitchen scenes

3.1 Rendering by components

The starting point of our work is the insight that the global illumina-
tion simulation process can be successfully modeled by calculating
light transport along direct and indirect illumination paths and com-
bining the results. This allows the integral term in Equation 1 to be
split up into direct and indirect components:

∫ incoming
directions Lin ·Brdf() =

{ ∫
Ldirect ·Brdf() +∫

Lindirect ·Brdf()
(2)

The indirect component can be further defined as the sum of the
contributions from three pure indirect transport paths (indirect dif-
fuse, indirect glossy, and indirect specular) and a fourth set of hy-
brid paths that account for the interactions between the pure paths.
If the hybrid path interactions are negligible, the overall expression
for the indirect component can be written as:

∫
Lindirect ·Brdf() ≈




∫ indirect Ldiffuse +∫ indirect Lglossy +∫ indirect Lspecular

(3)

3.2 Perceptual illumination components

The key idea we are going to explore in this paper is the observation
that the different direct and indirect illumination components are
probably not of equal importance with respect to their contributions
to the visual quality of global illumination renderings. Speculation
is often made about the relative importance of the different com-
ponents, but to our knowledge, there have not been any attempts
to formalize these assertions, or to quantify the perceptual impor-
tances of the direct and indirect components in global illumination
rendering. In the following section of the paper we describe a series
of psychophysical experiments we conducted to measure the effects
of the different illumination components on the perceived quality of
a set of global illumination images.

4 Experiments

Our goal is to develop a new perceptual metric for efficient, high-
quality, global illumination rendering that can predict the conse-
quences for visual image quality of approximations to full global
illumination simulations. Having adopted the rendering by compo-
nents framework described in the previous section, our task is first
to measure, and then to model how the different illumination com-
ponents affect judgments of image quality. To accomplish this we
have conducted a series of psychophysical experiments.

Figure 3: A complete set of composites plus the gold standard im-
age for a single viewpoint

4.1 Stimuli

To measure how different illumination components affect perceived
image quality, we needed to define and render a set of images to be
used in the experiments. Ideally we would like these images to
be representative of typical global illumination renderings so our
results can be applied beyond the specific conditions of our exper-
iments. For this reason we rejected the idea of rendering a sim-
ple “blocks world” environment and instead generated images from
detailed models of two real scenes. Example images are shown in
Figure 1. Together the office and kitchen scenes span a significant
portion of the range of typical interior environments we encounter
in the world, with the office scene having relatively uniform illu-
mination and mostly matte surfaces, and the kitchen scene having
more dramatic variations in illumination and a larger proportion of
glossy and specular surfaces.

To construct test image sets for our experiments, we rendered six
views of each scene using a custom component-based Monte Carlo
path tracer. Figure 2 shows these views, which were chosen to be
representative of viewpoints that a real observer might occupy, and
to show a range of different objects and materials (i.e. avoiding



views of blank walls, ceilings, desktops, etc.).
For each view, we generated separate renderings of the direct and

indirect diffuse, glossy, and specular illumination components. We
created eight composite images of each view by combining all per-
mutations of the three indirect components with the baseline direct
component. Figure 3 shows the set of composite images for one
view of the kitchen scene. In addition, for each view we generated
a ”gold standard” full global illumination rendering, so in total there
were nine images in each of 12 test sets (6 viewpoints per scene x
2 scenes).

Each image was rendered at 512×512 pixels and printed at
4”×4” using a Kodak XLS 8600 dye sublimation printer. Each
image was then mounted on 1/4” foamboard to allow easy manip-
ulation.

Since the rendering-by-components framework is based on the
idea that good approximations to full global illumination render-
ings can be achieved by combining separate simulations of the di-
rect and pure indirect illumination components, one issue we were
interested in exploring was whether the hybrid indirect paths ne-
glected by the framework, have a significant effect on visual image
quality. This was our rationale for including the gold standard in
each test set. By comparing the quality ratings given to this full
global illumination rendering and the pure component “silver stan-
dard” (direct plus pure indirect diffuse, glossy, and specular), we
can determine the perceptual importance (or lack thereof) of the
hybrid paths. From informal observations we expect that the con-
tribution of the hybrid paths to visual image quality will be small
since as is shown in Figure 3, there is very little visual difference
between the gold and silver standard images.

In computing the indirect components, we needed to set a cutoff
for path depth. Too severe a cutoff could result in large errors in
radiance estimates, while too lax a cutoff would be inefficient. We
chose to set the cutoff at four bounces. We found that images with
greater path depths were visually indistinguishable from the four-
bounce images.

Another issue we had to address was that the inclusion and omis-
sion of different components produced variations in contrast and
hue in the composite images. To minimize these differences we
equalized the images in each set using the techniques described in
Appendix A.

4.2 Procedure

Figure 4: Ranking a set of images

To measure the relationships between the presence of different il-
lumination components and visual image quality we ran a series of
ranking experiments [Guilford 1954]. The procedure is illustrated
in Figure 4. On each trial, a subject was given the set of compos-
ite images for one viewpoint. The subject was then asked to place
the images in order from lowest to highest by perceived quality.
We randomized the order in which each subject received the sets.
The ”office” and ”kitchen” ranking experiments were conducted in
two sessions on different days. Ten subjects participated in the ex-
periments. Both expert (computer graphics graduate students) and
non-expert (university graduates and undergraduates) participated.
All were naive to the design and goals of the experiments, and all
had normal or corrected to normal vision.
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Figure 5: Experimental results: quality scores for the different com-
posites

4.3 Results and Preliminary Analysis

The data generated by the experiments consisted of the rank order-
ings produced by each subject for each image set. Rank data is
strictly ordinal by nature which presents significant limitations in
terms of quantitative analysis and modeling [Guilford 1954]. For
example, while average rankings may indicate that one image is
consistently perceived to be of higher quality than another, rank-
ings alone cannot specify how much higher in quality one image is
than another. To place the images on an interval scale that allows
us to quantify the contributions to quality of the different illumina-
tion components, we applied Thurstonian scaling techniques from
visual psychophysics [Torgerson 1958].

In Thurstonian scaling, the variance in the rank position given to
an image by different subjects is used to derive rank distributions
for each image. The overlap in these distributions is taken as a mea-
sure of the psychological distance between the images with respect
to visual quality. By determining these parameters for all the im-
ages in a set, a perceptually-linear interval scale that indicates the
relative differences in quality between the images can be derived.

Using the technique described above, we derived perceived qual-
ity scales for each of the 12 image sets (6 viewpoints per scene × 2
scenes). The scales are summarized in Figure 5. There are several
preliminary observations that we can make about this data.

• First, across all the viewpoints there is a fairly consistent or-
dering of the different composite images, with direct-only im-
ages judged to be lowest in quality, and the silver and gold
standard images judged to be highest.

• Within the broad middle range, the presence of the indirect
diffuse component appears to be an important factor, with
images that include indirect diffuse generally being ranked
higher than those that exclude it. Additionally, the indirect
glossy and specular components appear to have smaller mod-
ulating effects within these larger trends.

• Finally, there are also clearly significant variations in the per-
ceptual importances of the different components across view-
points and scenes that will need to be accounted for by our
metric.

4.4 Determining the perceptual importances of the
illumination components

The scaling procedure we applied in the previous section allowed
us to calculate perceived quality scores for the composite images in
each set. The next step toward our goal of developing a metric that
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Figure 6: Computed and predicted r2 values and perceptual impor-
tances for the office and kitchen scenes.

can predict these scores, is to relate them to the presence or absence
of the different indirect illumination components, and derive mea-
sures of the perceptual importance of each component with respect
to perceived quality.

We do this by performing a linear regression on the quality scores
in which the score (Q) is modeled as the linear combination of the
components. This model takes the form:

Qi = ai +ai,d · ID+ai,g · IG+ai,s · IS (4)

where ID, IG, and IS are binary variables that indicate the inclu-
sion or exclusion of the indirect components, and ai,d , ai,g, and ai,s
are weights returned by the regression that quantify the perceptual
importance of each component in viewpoint i.

We performed separate regressions for each viewpoint in each
scene. Figure 6 summarizes the perceptual importance factors re-
turned by the regressions. We can observe several trends in this
data.

• First, in all but one viewpoint, the indirect diffuse component
(ID) has the highest perceptual importance. This squares with
informal observations and comments made by the subjects
that they did not like images containing large black regions
(which would be the case for shadowed areas).

• Next, the regression showed that the indirect glossy (IG)
and indirect specular (IS) components were of lower and
roughly equal perceptual importance, with some variation
across viewpoints. This result is also in line with observa-
tions and subject reports that the absence of reflections on sur-
faces that should have them (e.g. windows, monitors, etc.), is
disturbing and reduces the visual quality of the image, but at
the same time, surface reflections that mask underlying detail
(such as the reflections on the marble countertop in the kitchen
scene), are also sometimes judged to reduce image quality.

• Finally, an analysis showed that addition of the hybrid paths
did not have a significant effect on perceived image quality (t-
test: t22 = 0.32, p = 0.79), so we can conclude that under the
conditions studied their perceptual importance is low. This re-
sult provides further support for the rendering-by-components
framework.

At this point we have taken several important steps toward
our goal of developing a perceptual metric for global illumination

rendering-by-components. Through the experiments we have mea-
sured the relationships between perceived image quality and the
presence or absence of the different illumination components. From
our subsequent analysis we have derived values for the perceptual
importance of each of the components with respect to the measured
quality scores. What remains to be done is: 1) to find a method
by which we can predict the perceptual importances of the com-
ponents from some indicator of the physical properties of a scene,
and 2) to formulate the metric so we can predict and/or specify the
visual quality of a rendering by knowing the scene characteristics
and the illumination components used. This work will be described
in the following section.

5 Formulating the metric

From our experiments, we have derived measures of the perceptual
importances of the different illumination components. To proceed
with formulating a perceptual metric that can be used to guide the
rendering process, we need indicators that specify how the physi-
cal characteristics of the scene are related to the magnitudes of the
different illumination components. While these component magni-
tudes are ultimately a complex function of scene geometry, light-
ing, and material properties, we believe that useful indicators can
be based on material properties alone. Our reasoning is as follows.
In a scene without specularly reflecting materials, the illumination
contribution of the indirect specular path would be null, and there-
fore the perceptual importance of that component should be zero.
Similarly, in a scene with more matte than glossy materials, the
indirect diffuse component will on average have greater influence
on the scene radiances than the glossy component, and therefore
its influence on the final appearance of the image, and its percep-
tual importance, are likely to be greater. Similar arguments in sup-
port of material-based indicator variables can be constructed for the
other illumination components. Undoubtedly one can create scenes
where these principles will break down, but we believe that this
approach will be useful for a wide range of scenes.

One distinct advantage of employing material-based indicators,
is that indicator values can be calculated online during computation
of the direct illumination component. Since any global illumina-
tion rendering system will have to compute the direct component
anyway, this approach adds negligible overhead to the rendering
process, which should be of great advantage for implementing in-
teractive systems.

5.1 Defining the indicators

We explored several formulations of the indicator variables.

• lobe counts: percentage of pixels with a dif-
fuse/glossy/specular lobe

• image reflectivities: percentage of total image reflectance
contributed by each component

X{d,g,s} =
Σ#pixels

i
ρi,{d,g,s}

Σ#pixels
i

ρi,d +ρi,g +ρi,s

(5)

• pixel reflectivities: average percentage of pixel reflectance
contributed by each component

X{d,g,s} =
1

#pixels
·Σ#pixels

i

ρi,{d,g,s}
ρi,d +ρi,g +ρi,s

(6)

5.2 Indicator response functions

One final step we need to perform before we can construct and test
different metrics, is to define response functions for the indicators



that specify how sensitive the metric is to any particular indicator.
We experimented with three types of response functions. The sim-
plest was a linear function of the form,

f1(x) = b1 +b2 · x (7)

Here sensitivity to the indicator is controlled by the constant b2
which is fixed for all values of an indicator. The second response
function we tested,

f2(x) = b1 −b
1

x+1
2

(8)

is also linear for low and moderate indicator values, but asymptotes
to a ceiling to limit the influence of large values. Finally we also
experimented with an s-shaped response function of the form,

f3(x) = b
−1
x where we define f3(0) = 0 (9)

that in addition to limiting the response to large values, also limits
the influence of small values that might be contaminated by sam-
pling noise.

5.3 Modeling perceptual importance

We are now ready to construct and test different metrics for pre-
dicting the visual quality of component-rendered global illumina-
tion images. Since our experiments have shown that the perceptual
importance of the components varies across viewpoint and scene,
we need to include these factors in our metrics

Using the indicator variables and response functions defined
above, we can model the perceptual importance ai, j of the jth indi-
rect illumination component for viewpoint i as:

âi, j = w1, j +wd, j · fi(xi,d)+wg, j · fi(xi,g)+ws, j · fi(xi,s) (10)

In this model xi,d , xi,g, and xi,s are the diffuse, glossy, and specular
indicators for viewpoint i, and w1, j, wd, j , wg, j, and ws, j are weights
determined by regressing on the perceptual importances.

5.4 Selecting the best model

Using this general model, we ran a series of regressions to try to
find the combination of indicators and response functions that best
predicted the perceptual importance factors we measured in the ex-
periments. Of the three indicators we tested, the regressions showed
that the second indicator: image reflectivities, provided the best
prediction of the experimental results. The lobe counts indicator
worked reasonably well for the specular component, but failed to
predict the importances of the diffuse and glossy components. The
performance of the pixel reflectivity indicator was similar to, but
slightly worse than the image reflectivity indicator. Of the three re-
sponse functions we tested, the regressions also indicated that the
simple linear function yielded the best-fitting model.

While overall, this model was reasonably good at predicting the
perceptual importances of the different components, its ability to
predict the importance of the indirect glossy component was poor
relative to the others. We believe this is because glossy materi-
als have a wide range of appearances, from almost matte to almost
mirror-like. We found that by defining separate high gloss and low
gloss indicators we were able to produce a model that was better at
predicting the perceptual importance of the indirect glossy compo-
nent. We experimented with various split points and found that the
best fit occurred when Ward materials with lobe widths > 0.05, and
Phong materials with exponents < 320 were used to calculate the
low gloss indicator (xlg). Materials with lobe widths ≤ 0.05 and
exponents ≥ 320 were used to calculate the high gloss indicator
(xhg) [Ward 1992; Blinn 1977].

The expanded form of the model is shown below. Since we have
decided to use linear response functions for the indicators, the fi()

terms in Equation 10 can be dropped, because the constants con-
tained in these terms can be folded into the indicator weights wi, j.
Also it is not necessary to explicitly include the specular indicator
variable in this formulation because xi,d + xi,g + xi,s = 1 and there-
fore xi,s can be derived from the other two variables. This produces
the simplified expression:

âi, j = w1, j +wd, j · xi,d +whg, j · xi,hg +wlg, j · xi,lg (11)

Finally, we found that we could improve the model’s ability to
predict the perceptual importances of the different components by
adding a factor r2 that is a statistical measure of the reliability of the
data we are attempting to model. Since we are modeling perceptual
importances that are themselves derived from regressions on the
quality scores measured in the experiments, there will be higher r2

values associated with viewpoints where these regressions provided
a better fit to the quality scores, and higher r2 values indicate that
the reliability of the perceptual importance estimates are better for
those views. Incorporating this factor into the model produces the
expression:

âi, j = w1, j +(1−r2)·w2, j +r2 ·
[
wd, j · xi,d +whg, j · xi,hg +wlg, j · xi,lg

]
(12)

With this model we were able to predict more than 70% of the vari-
ance in the perceptual importances of the components we measured
in the experiments.

Unfortunately, these r2 values would not normally be available to
a rendering algorithm, since they are the product of the analysis of
the data from the ranking experiment. If we want to use this model
in our final metric we need to be able to estimate r2 from other,
more accessible data. We found that the following expression:

r̂2
i = c1 + cd · xi,d + chg · xi,hg + clg · xi,lg (13)

is a good estimator of the r2 values we obtained from our analyses
of the experimental data.

By estimating these r2 values and calculating the indicator values
for each viewpoint, we were able to run regressions to determine
the weights (wi, j) in Equation 12 that best model the perceptual
importances of the indirect illumination components for each scene.
These parameters are tabulated in Appendix B.

We found that the model’s predictive power improved slightly
when we excluded viewpoint 6 of the office scene. In this par-
ticular viewpoint, the contrast adjustment procedure (described in
Section 4.1 and Appendix A) added a significantly larger ambient
term to the images than in the other cases, which we suspect dis-
torted the experimental measures of the perceptual importances of
the illumination components for this view, and made it an outlier in
subsequent analysis and models.

Figure 6 illustrates the predictive abilities of the models. Fig-
ure 6a compares observed r2 values(solid line) and those pre-
dicted (dashed line) by Equation 13. Figures 6b and 6c show the
correspondence between the experimentally measured importances
(solid lines) and the importances predicted by Equation 12 (dashed
lines) for the office scene. In Figure 6c viewpoint 6 has been re-
moved. Finally, Figure 6d shows the correspondence between the
measured and predicted importances for the kitchen scene. It is
clear from the close correspondence between the solid and dashed
lines in these graphs, that the model is very good at predicting the
perceptual importances we measured in our experiments, and there-
fore should perform well as the foundation of our perceptual quality
metric.

5.5 Formulating the perceptual metric

Given the model for the perceptual importances of the different il-
lumination components defined in Equation 12, we can now finally
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Figure 7: Applying the metric to predict the quality values of composites for two viewpoints in the office scene.

formulate our full perceptual quality metric as:

Q̂i = ai + âi,d · ID+ âi,g · IG+ âi,s · IS (14)

where Q̂i is the quality score predicted by the metric for an image
of viewpoint i, (defined by some composite of illumination compo-
nents), and the âi, js are the perceptual importances of the different
components.

6 Using the metric

In the previous section we formulated a new perceptual metric for
predicting the visual quality of component-rendered global illumi-
nation images. In this section we will demonstrate the metric’s pre-
dictive abilities and illustrate how the metric could be used in an
interactive rendering system.

Figure 7 shows two sets of component-rendered images of the
office scene. Each of the images is positioned with respect to the vi-
sual quality scale Q̂ predicted by the new perceptual metric. There
are several things to observe in this figure.

• First, is the correspondence between the quality values (Q̂)
predicted by the metric for these images, and the values mea-
sured in our experiment (Q), indicated by the X’s below each
scale. The similarity of the measured and predicted values is
a confirmation that the metric is indeed capable of modeling
the perceptual importances of the different illumination com-
ponents and their contributions to perceived quality.

• Next, the metric’s ability to quantify the quality of these im-
ages can also be confirmed by noticing the correspondence be-
tween the locations of the images along the quality scale and
the similarities and differences in their visual appearances.
Notice that on the upper scale the composites D + ID and
D+ IDGS placed near the high end of the scale are both sim-
ilar to each other in visual quality, and are of distinctly higher
quality than the composites D and D + IGS that the metric
placed near the lower end of the scale. Similarly, the rela-
tively equidistant positions of the images on the lower scale,
accurately reflect the moderate increments in visual quality
that can be observed by comparing adjacent images on the
scale.

• Finally, the power of the metric to predict view-specific differ-
ences in the perceptual importances of the illumination com-
ponents can be seen by comparing the central pair of images

on each scale. On the upper scale, because of the material
characteristics of the objects in this view, the metric correctly
predicts that the indirect diffuse component makes a much
greater contribution to quality than the glossy or specular
components, so composite D + ID is of substantially higher
quality than composite D+IGS. However, for the view shown
on the lower scale, where the material characteristics are sub-
stantially different, adding the the indirect diffuse component
D + ID does not produce as great an improvement in image
quality, and conversely, adding the indirect glossy and spec-
ular components D + IGS produces a relatively greater im-
provement than it did for the other view.

The three capabilities described above confirm that our new met-
ric can accurately predict both the perceptual importances of differ-
ent illumination components, and the resulting perceived quality
values of component-rendered images.

6.1 A perceptually-based component renderer.

Figure 8: A hypothetical perceptual component rendering system.

Figure 8 illustrates how our new metric could be used in an in-
teractive global illumination rendering system. Assuming there are
not sufficient resources to do full global illumination rendering in
real time, a user could specify whether to optimize system perfor-
mance to a constant quality level, or a constant frame rate. Given
these user preferences, for each viewpoint the system would: gather



information about the materials visible in that view as part of an ini-
tial direct illumination pass; calculate indicator values and the per-
ceptual importances of the indirect illumination components; dy-
namically allocate system resources to the computation of the dif-
ferent components (as shown by the pie chart on the lower right of
Figure 8); and composite the components for display. Taking ad-
vantage of frame-to-frame coherence in estimating the importances
and allocating resources would be likely to lead to even further im-
provements in performance.

7 Conclusions/Future Work

In this paper we have developed a new perceptual metric for ef-
ficient, high quality, global illumination rendering. Using the
rendering-by-components framework, the metric can predict the
perceptual importances of the indirect illumination components,
and their contributions to the visual quality of the resulting image.
We have demonstrated the predictive accuracy of the metric and
have shown how it could be used in a global illumination rendering
system.

An important aspect of this perceptual metric compared to others
that have been developed, is that because it is based on simple mea-
sures of scene reflectances that can be gathered during calculation
of the direct illumination component, it adds negligible overhead
to the global illumination rendering process. This should make it
attractive for use in interactive rendering systems.

Although we feel the current metric makes an important contri-
bution, there is of course always much work to be done. First, we
would like to explore improvements to the material-based indica-
tors used to estimate the importance of the indirect glossy compo-
nent, and find more meaningful ways to divide the wide range of
surface reflectance properties that are currently defined as glossy.
Work by [Pellacini et al. 2000] might provide a useful starting point.
Second, the parameters used in the current metric are viewpoint in-
dependent, but must be tuned for a particular scene. As a next step,
we would like generalize the metric so it can automatically adapt to
different scene characteristics. Third, we would like to implement
a rendering-by-components system that uses our metric. This will
entail solving a number of important problems posed by the compo-
nent approach including dynamic resource allocation, methods for
gracefully approximating the components, and understanding the
perceptual consequences of different approximation methods. Fi-
nally, there is always much more work to be done to increase our
understanding of human perception to develop more sophisticated
and effective perceptual metrics for global illumination rendering
and other aspects of computer graphics.
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Appendix A: Equalizing contrast and hue

Figure 9: (a) Direct illumination image. (b) Contrast equalized ver-
sion of (a). (c) Full global illumination solution. Notice the contrast
differences between (a) and (c) and the similarity of (b) and (c).

One consequence of the rendering-by-components and com-
positing approach, is that including or excluding components from
a composite can introduce contrast differences with respect to the
other composites in a set. Figure 9 illustrates this problem. Image
(a) only contains direct illumination. Notice that image contrast is
greater than in (c), the full global illumination solution. To min-
imize this artifact we had to develop a contrast equalization tech-
nique.

In any set of composites, the full global illumination solution
(gold standard) has the lowest contrast. By adding an “ambient”
image to the other composites in the set, it is possible to mini-
mize contrast differences. To accomplish this we first calculated
an albedo image that represented the diffuse colors of the surfaces
visible from that viewpoint. For each composite image + albedo
image combination, we used a binary search method to find a scal-

ing factor for the albedo image that minimized contrast differences
with respect to the full global illumination solution.

Image contrasts were calculated using a scale-dependent local
contrast measure that [Peli 1991] has shown is well correlated with
perceived contrast. First, we derived a luminance image from RGB
values by the technique described in [Poynton 1996]. Next we con-
structed an image pyramid and calculated pixel contrast Ci, j at dif-
ferent spatial scales using the equation:

Ci, j =
L′

i, j −Li, j

L′
i, j

(15)

where Li, j is the luminance of pixel i at pyramid level j and L′i, j
is the luminance of the pixel in a bi-linearly upsampled version of
the next highest pyramid level. To combine the contrast measures
at different spatial scales, it is necessary to weight the contrasts at
each level by the factor Wj = Bw·Bh

Cw·Ch
where Bw and Bh are the image

dimensions at the base level and Cw and Ch are the dimensions at
the current mip-map level j. Thus a summary contrast measure of
the image can be defined as:

C =
m

∑
i=0

n

∑
j=0

Wj ·Ci, j (16)

The effectiveness of this contrast equalization technique can be seen
in Figure 9 by comparing image (b), the contrast equalized version
of (a) with image (c), the full global illumination solution.

Figure 10: (a) Direct illumination, (b) contrast equalized version,
(c) contrast equalized using hue shifted albedo image, and (d), full
global illumination solution. Notice the hue differences between
(a,b) and (d), and the similarity of (c) and (d).

Another side effect of the compositing process was a hue shift
between images containing different combinations of indirect illu-
mination components. To minimize this artifact we hue shifted the
albedo image so its average hue was the same as the average hue of
the indirect components. This was done before contrast equaliza-
tion so any luminance changes in the albedo image due to the hue
shifting would be compensated for during calculation of the albedo
scale factors. Figure 10 shows an example of this hue shift arti-
fact and how our procedure minimizes this artifact while equalizing
contrast with respect to the full global illumination solution.

Appendix B: Parameters used in the metric

Predicted r2 values:

c1 cd chg clg

6.07 -5.26 -8.52 -4.74

Predicted importance factors: office scene

w1 w2 wd whg wlg

Indirect Diffuse: -3097.21 2566.22 3206.90 0 2911.57
Indirect Glossy: 5344.02 -4439.80 -5529.39 0 -5026.76

Indirect Specular: 1730.64 -1446.58 -1789.08 0 -1630.97

Predicted importance factors: kitchen scene

w1 w2 wd whg wlg

Indirect Diffuse: -0.509 0.80 1.08 0.49 1.70
Indirect Glossy: -12.12 11.20 13.28 21.64 6.37

Indirect Specular: 5.45 -4.97 -5.54 -7.66 -3.65


