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Abstract

This paper presents an interactive renderer that computes direct
illumination in dynamic scenes with soft shadows and complex
BRDFs. The renderer permits the user to both navigate the scene
interactively and modify the scene by moving objects, changing
materials, and changing lighting conditions.

To support interactive viewing, we introduce a visibility
caching technique in which the illumination of each patch in the
scene is captured by a local illumination environment. This sim-
plified environment enables interactive rendering by accelerat-
ing visibility computations. Since this is an object-space tech-
nique, local illumination environments can be reused from frame
to frame.

To support interactive modification of the scene, we introduce
a dynamic visibility algorithm that rapidly identifies which local
illumination environments to update when the scene is modified.
A 5D hierarchy stores illumination dependencies, and permits ef-
ficient identification of affected local illumination environments.

These techniques have been implemented in a parallel render-
ing system that uses a cluster of Intel processors connected on a
fast network. The renderer produces images at interactive rates,
achieving speedups of 10� to 20� over a standard parallelized
ray tracer.

CR Categories: I.3.3 [Computer Graphics]: Pic-
ture/Image/Generation I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism

Keywords: Illumination, Rendering, Parallel Computing, Ray
Tracing, Rendering systems, Visibility Determination, Java.

1 Introduction

One long standing area of research in computer graphics is the
rendering of high-quality images with soft shadows, complex
BRDFs, and global illumination at interactive rates in dynamic
scenes. Traditionally, rendering speeds are too slow to match
these interactive needs. In this paper, we address the problem of
interactive rendering of dynamic scenes with support for direct
illumination effects such as soft shadows and arbitrary BRDFs
because direct lighting with soft shadows yields the minimum
feature set that provides acceptable cues to a user in an interac-
tive application. Our system uses novel software techniques and
exploits parallel processing to achieve this interactive rendering
performance. There are several potential applications of this sys-
tem, such as modeling, virtual reality walkthroughs, and gaming
systems.

Our system permits the user to interactively navigate the scene
and also to modify it by moving objects and changing materials.
This paper makes several contributions that enable this interac-
tive rendering performance:

�This paper was submitted for review to SIGGRAPH 00.

� To support interactive viewing of the scene, we introduce
the concept of a local illumination environment: the sub-
set of the environment that contributes to the illumination
at a patch in the scene. When a patch is rendered, shadow
rays are traced through its local illumination environment,
which is typically very simple. Thus, visibility computa-
tions for shadows rays are accelerated.

� The local illumination environments of some patches in the
scene change when the scene is modified. The ray segment
tree, a 5D hierarchical data structure, is used to track illu-
mination dependencies and to allow rapid identification of
local illumination environments affected by a scene modi-
fication.

� Both of these techniques have been implemented in a par-
allel rendering system, written completely in Java, and run
on Intel processors connected by a fast network. We chose
this environment to maintain flexibility, portability and ex-
tensibility of our code base.

2 Related Work

2.1 Direct illumination

Several researchers have considered the problem of accelerating
the rendering of soft shadows [8]. Woo et al. [28] survey shadow
algorithms, though this survey is somewhat dated. Several re-
searchers have developed algorithms for computing accurate di-
rect illumination. Teller [26] showed how to compute antium-
bras and antipenumbras. Lischinski [19] introduced discontinu-
ity meshing to produce global illumination solutions with accu-
rate soft shadows. Haines [15] introduced shaft culling to speed
up visibility computation in radiosity systems. Durand et al. [10]
create a mesh of all illumination discontinuity events; this mesh
can be used to compute illumination due to area light sources.
Stark et al. [25] use splines to represent shadow irradiance in re-
stricted environments. More recently, Hart et al. [16] propagate
blocker information in image space to render analytically correct
soft shadows.

Several researchers have recently focussed on the interactive
computation of shadows: Soler et al.[24] rapidly approximate
shadow computations using hardware convolution. Parker et
al. [21] achieve interactive direct lighting by highly optimizing
a parallelized ray tracer so that casting rays is extremely fast.

2.2 Dynamic scene updates

Recently, researchers have focussed on supporting interactive
scene manipulation and editing with high-quality rendering. Sev-
eral systems support scene editing with ray-traced imagery [7, 4,
17, 20, 22] while restricting user manipulations in different ways.
The most recent and flexible of these systems [4], permits the
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user to modify material properties of objects, as well as move ob-
jects in the scene. However, all of these systems impose a severe
restriction on the user: the viewpoint must stay fixed. Several re-
searchers have considered the problem of dynamic editing with
radiosity algorithms [6, 9, 11, 12]. Drettakis and Sillion [9] sup-
port dynamic editing by augmenting the four-dimensional link
hierarchy in a hierarchical radiosity system. The drawback of
these systems is that they only support pure diffuse surfaces.

Bala et al. [3] support scene editing with changing viewpoints
in their ray tracing system. Their rendering system computes ra-
diance interpolants that accelerate rendering by approximating
radiance. They introduce ray segment trees to track dependen-
cies of radiance interpolants and update them at interactive rates.
However, their rendering times are not interactive.

Arvo and Kirk [2] use a five-dimensional representation of
rays to accelerate ray-object intersections.

3 Rendering System
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Figure 1: Rendering system.

This section describes the overall structure of the system. A
user sends navigation commands and geometry/material/lighting
changes to the rendering system, which interactively produces
images that are displayed to the user.

The system is split into three modules. The first module is the
dynamic visibility updater. It takes in bounding box descriptions
of scene modifications and produces a set of patches that must
have their local illumination environments updated. This set of
patches is provided to the second module, the local illumination
environment constructor.

The local illumination environment constructor uses this set
of patches to recompute the necessary local illumination envi-
ronments. This module is also continuously computing local il-
lumination environments as a user navigates the scene. These
local illumination environments are passed to the shaders.

The shaders consist of several parallel renderers that use local
illumination environments to render the pixels assigned to them.
The renderers are not synchronized with the local illumination
environment constructor, so the shaders do not have to wait on
the results of local illumination environment construction. Also,
computing any one pixel does not depend on the computation of
any other pixel, so there is no communication between the ren-
derers. The computed pixels are sent over a high-speed network
where they are assembled into a single image.

The rest of this paper is organized as follows: Section 4
describes how local illumination environments are constructed.

Section 5 describes how dynamic scene modifications are sup-
ported. Section 6 presents results, and finally, we conclude with
a discussion of future work in Section 7.

4 Local Illumination Environments

The local illumination environment associated with a patch is the
subset of the original scene, not necessarily determined by ge-
ometric proximity, that can significantly influence the illumina-
tion at the patch. Therefore, illumination at a patch computed
using the local illumination environment does not differ signifi-
cantly from that computed by using the entire scene. Rendering
using the local illumination environment is substantially accel-
erated because the local illumination environment is often much
simpler than the entire scene. As shown in Section 6, using local
illumination environments allows significant speedup over ren-
derers that use traditional acceleration structures. One impor-
tant feature of local illumination environments is that they are
view-independent; since a local illumination environment does
not change with the viewpoint it can be reused from frame to
frame.

For a direct lighting shading model, the local illumination en-
vironment for a patch consists of a set of light sources (emitters)
that are visible to the patch, and for each visible emitter, a list of
objects that may partially occlude the emitter. This list of objects
is called a blocker list. Thus, each local illumination environment
consists of a set of emitters, and their associated blocker lists (if
any). Notice that a blocker list is associated with a patch-emitter
pair.

Section 4.1 describes how local illumination environments are
constructed. Section 4.2 describes how local illumination envi-
ronments are used when rendering images. Section 4.3 describes
several important design trade-offs in the design of the local illu-
mination environment constructor module.

4.1 Constructing local illumination environ-
ments

For optimal performance, local illumination environments
should be simple. Ideally, the local illumination environment for
each patch should include only emitters that affect illumination
at the patch. Similarly, for each visible emitter in a local illu-
mination environment, the associated blocker list should only in-
clude the blockers that actually occlude the emitter. Computing
this minimal blocker list is potentially expensive. Therefore, we
sample the visibility between a patch and emitter to determine
blocker lists, as done in [16].

The construction of the local illumination environments for
all patches in the scene can be considered to be the successive
computation of the blocker lists for each patch-emitter pair in the
scene. Local illumination environments are constructed lazily.
Section 4.3.3 describes how patch-emitter pairs are selected for
blocker list construction as the user navigates the scene.

Assuming a patch-emitter pair is selected, its blocker list is de-
termined by casting rays from the patch to the emitter to compute
visibility, and adding occluding objects (if any) to the blocker list
of the patch-emitter pair. There are three cases that arise when
computing visibility between a patch-emitter pair:

� Fully occluded. If all rays from the patch to the emitter are
occluded, the emitter is excluded from the local illumina-
tion environment for the patch. When shading this patch,
no visibility computations are performed for that emitter.

� Fully visible. If all rays from the patch to the emitter are
visible, the emitter is included with an empty blocker list

2



Program of Computer Graphics Technical Report: PCG-00-02, Cornell University

receiver

shadow area

blocker

(a)

(b)

receiver

emitter 1 emitter 2
emitter 3

emitter 1 emitter 2
emitter 3

blocker

Figure 2: Constructing blocker lists. (a) Constructing the local
illumination environment for the three patch-emitter pairs. (b)
The local illumination environment for the patch.

in the local illumination environment of the patch. Again,
when shading this patch, no visibility computations are per-
formed for that emitter; only shading is computed.

� Partially occluded. If some of the rays from the patch to
the emitter are occluded, the corresponding occluders (or
blockers) are added to the blocker list for that patch-emitter
pair. When shading the patch, visibility is computed only
with respect to this blocker list.

Figure 2 depicts how blocker lists are computed for a patch
in the scene. Figure 2-(a) shows some rays cast from the patch
to each emitter; emitters 1 and 2 are partially blocked, while
emitter 3 is fully visible to the patch. The blocker lists for
the corresponding patch-emitter pairs are shown in Figure 2-(b).
The blocker list for emitter 1 includes the vertical face of the
cube shown. The blocker list for emitter 2 includes the sphere.
Note that the algorithm does not restrict blockers to be polygo-
nal patches; arbitrary ray tracing primitives are permitted. The
blocker list for emitter 3 is empty, and emitter 3 is marked as
fully visible in the local illumination environment for the patch.

4.1.1 Patch subdivision

Rendering a fully occluded or fully visible patch-emitter pair is
inexpensive since no visibility computations are necessary. Ren-
dering a partially occluded patch-emitter pair requires computa-
tion proportional to the size of its blocker list because visibil-
ity computations are done with respect to each blocker in the
list. Large input patches are more likely to have large blocker
lists, e.g., the floor or ceiling in an indoor environment. There-
fore, to improve rendering performance, patches whose local il-
lumination environment include a large blocker list are automat-
ically subdivided. Patches are defined with respect to the two-
dimensional coordinates of a surface. Thus, if there exists an

uniform mapping from the unit square to the surface of an ob-
ject, patches can be defined over that surface. Patch subdivision
is done through a quad-tree subdivision of the unit square repre-
senting the object surface. This quad-tree of patches is called a
patch tree. There is one patch tree per surface in the environment.

A patch tree is subdivided if two conditions hold:

� the blocker lists for the patch tree are too complex (i.e., they
contain more than a specified number of blockers); and

� the surface area represented by that patch tree is above a
certain threshold.

4.1.2 Shaft sampling

Since visibility is computed by sampling, it is possible that a
blocker is not included in a blocker list due to insufficient sam-
pling. Thus, the accuracy of the blocker lists depends on the
number of sample rays used to compute the lists. As the number
of samples increases, the probability of missing a contributing
blocker or emitter decreases. Section 4.3.2 describes how ad-
ditional samples are automatically acquired so that blocker lists
converge over time.

An alternative technique to determine blocker lists is shaft
culling [14]. Shaft culling produces conservative blocker lists
by finding all potential blockers that lie in a shaft from the patch
to the emitter. However, shaft culling is too conservative; for
example, in Figure 2, shaft culling would probably include all
the faces of the cube in the blocker list for emitter 1. Unlike
shaft culling, our technique only samples the shaft; while this
approach may miss some objects from the shaft, every object in-
cluded in the blocker list is guaranteed to be contained within the
shaft. Increasing the number of samples decreases the probability
of missing a potential blocker. Thus, over time, this method will
converge to the right solution while always including the smallest
number of blockers possible given the information collected.

4.2 Shading with local illumination environ-
ments

Once patch-emitter blocker lists are constructed, the renderer
computes direct illumination by using the local illumination envi-
ronment for each visible patch in the image. A pixel is shaded by
first tracing a ray through the scene to find the point of intersec-
tion. Once the point of intersection is determined, shadow rays
are cast to each of the light sources. However, where a standard
ray tracer would trace shadow rays to all light sources through
the entire scene, our algorithm casts rays only to lights in the lo-
cal illumination environment for the intersected patch and checks
for intersection only with objects in its blocker lists.

Radiance is computed along the shadow rays that are not
blocked, and multiplied by the BRDF at the surface of the patch.
It is important to note that for specular BRDFs, a direct light-
ing local illumination environment is insufficient to produce a
compelling image. Thus, if the scene includes an object with a
specular BRDF, rays that intersect that object are traced in the
same way that a standard ray tracer would.

Patches are not stored in the same acceleration structure used
by higher level objects to determine eye ray visibility. Instead,
once the surface coordinates of the intersection point are deter-
mined, the associated patch tree is traversed to determine the lo-
cal illumination environment to use for that point. This is a more
appropriate search structure for patches than a regular grid since
they are defined over a surface. Traversing this structure adds an
additional cost that is not incurred by a standard ray tracer; but,
we have found that this cost is negligible.

3
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This algorithm achieves significant speedups by eliminating
visibility computations for fully visible and fully occluded patch-
emitter pairs. As shown in Figure 10, a significant fraction of the
of the patch-emitter pairs in the scene fall into one of these two
categories.

patch

image

blocker

patch

emitter

(a)

(b)

shadow rays

eye rays

Figure 3: Shaders. (a) Renderer uses blocker lists when shading
pixels. (b) Output image with direct illumination on all patches,
including shadows.

Figure 3 depicts how blocker lists are used when rendering
an image. Figure 3-(a) shows some eye rays traced through the
image plane along with shadow rays traced by the renderer to
compute illumination at each visible patch. Our algorithm accel-
erates the computation of shadow ray visibility. Eye ray visibility
is computed as in a standard ray tracer. Figure 3-(b) shows the
final image.

4.3 Design Issues

This section describes several design trade-offs that are ad-
dressed by the system.

4.3.1 Asynchronous

The local illumination environment constructor is an asyn-
chronous process that computes local illumination environments
as the user navigates the scene. Local illumination environments
are initially computed for large patches and are refined over time
as the system is used. The advantage of on-line computation of
local illumination environments is that they are only computed
for the portions of the scene that are currently visible to the user.
It is also possible to dynamically garbage collect local illumina-
tion environments for surfaces that the user is no longer looking
at. This method can lead to some artifacts as the user observes
new portions of the scene that do not have their local illumination
environments fully computed as yet. These artifacts typically
clear up quickly.

4.3.2 Blocker list quality

Computing blocker lists is a stochastic process and as such, it is
possible that some emitter or some blocker may be missed. These
errors show up either as dark patches or missing shadows. Since
we normally operate in an on-line mode and the blocker lists
are continually refined, such errors go away in time. However,
incomplete blocker lists are objectionable to the user.

To minimize these artifacts, we use the concept of blocker
list quality. Blocker list quality is a measure of how confident
we are that the contents of the blocker list are complete. Cur-
rently, we use a ratio of samples computed to patch area to ap-
proximate this measure. A blocker list is not used by the ren-
derers until the blocker list quality is above a certain threshold.
Instead we continue to use the blocker lists of the patch’s par-
ent (a pre-computation could be performed to make sure that all
root patches have a high quality blocker list) until the blocker list
quality is high enough.

4.3.3 Picking patch-emitter pairs

The local illumination environment constructor selects a patch
by randomly choosing a receiver patch in proportion to the num-
ber of pixels the patch occupies on the screen. This is possible
because blocker lists are constructed concurrently while render-
ing images. Thus, a random pixel on the screen is selected, and
the closest visible patch from that pixel is picked for blocker list
construction.

Once a patch is selected, there are two possible methods to
select an emitter. The first method is to randomly pick one of the
emitters in the scene. This method does not work well in environ-
ments with many emitters since most emitters are fully occluded
with respect to a single patch. Therefore, a second method is
considered that is similar in spirit to that proposed by [23]. A
uniform subdivision grid over the entire scene is maintained with
a list of emitters in each cell of the grid. Each cell in the grid
represents the set of emitters possibly visible from some point
within the cell.

Initially, emitters are picked at random, as in the first method,
but these emitters are stored in the grid as they are found. As
the grid becomes populated, the algorithm switches to randomly
picking emitters from the appropriate cell, instead of from the
global list of lights. The cell is selected according to the point
on the patch from which a ray is cast. The benefit of using this
grid is that it directs computation of blocker lists to emitters that
are more likely to contribute to the illumination from the receiver
patch.

5 Dynamic Visibility

As described in Section 4, local illumination environments are
view-independent; i.e., when the viewpoint changes, blocker lists
can be reused from frame to frame. However, when objects in
the scene move, some of the blocker lists become incorrect. For
example, Figure 4 depicts three patches in a scene, along with
some of the rays traced by the local illumination environment
constructor to determine blocker lists for each patch. When an
object with bounding box b is added to the scene, the blocker lists
for patches P1 and P2 are no longer correct, while the blocker
list for patch P0 is unaffected by the addition of the object. If the
blocker lists for patches P1 and P2 are not updated, the rendered
image will incorrectly miss the shadow cast on the patches by the
new object.

This section presents an algorithm to efficiently identify all
blocker lists that might be affected by a change to the scene.

4
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Figure 4: Blocker lists for patches P1 and P2 are no longer cor-
rect when b is added to the scene.

When the scene is changed, the algorithm has to satisfy two
goals:

� Correctness. For correctness, all the blocker lists affected
by the scene change must be identified;

� Efficiency. For efficiency, only the blocker lists affected by
the change to the scene must be updated.

The blocker list for each patch-emitter pair in the scene de-
pends on some region of space; Figure 4 shows these regions
as shaded areas. To correctly update blocker lists, the algorithm
must conservatively characterize these regions. Section 5.1 de-
scribes a dual space [3], called ray segment space, in which each
dependency region of a blocker list can be represented conve-
niently. Section 5.2 describes a data structure, called a ray seg-
ment tree, that stores the dependency regions. Section 5.3 de-
scribes how this data structure is used to rapidly identify the
blocker lists affected by a change in the scene.

5.1 Ray segment space

world space
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Emitter L
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q Axis 

t A
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q AxisLine l
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Figure 5: Ray segment space. The dependency region of the
patch P on emitter L is represented by the green box in (p; q; t)-
space.

A dual space is used to represent the regions of world space
that can affect a blocker list. For simplicity, we first consider a
2D scene in which we must represent all lines through patch P

and emitter L. Each line l in 2D world space from P to L can be
parameterized by the two intercepts (p; q) it makes with a pair of
parallel axes surrounding the scene, as shown in Figure 5. This
parameterization is the 2D equivalent of the two-plane parame-
terization described in [13, 27] 1. The four extremal lines shown

1In this parameterization, four such pairs of axes are required to repre-
sent all lines that pass through a scene. However, other parameterizations
of lines are also possible as described in [5, 18].

in Figure 5, from each end of patch P to each end of emitter L,
conservatively bound all lines from P to L. Thus, all lines from
P to L can be conservatively represented by a range (p0; q0)—
(p1; q1), as shown in the light blue region of Figure 5. The prob-
lem with this conservative representation is that it also includes
regions of space that do not affect the blocker lists. For example,
in the figure, when an object with bounding box b is added to the
scene, the blocker list for the patch-emitter pair P -L is marked
as potentially affected, even though b does not block any of the
rays from P to L.

For efficiency, a more accurate representation of the depen-
dency regions is required. This accuracy is achieved by adding an
additional dimension t that represents the distance along a ray (as
shown in the figure). This dual three-dimensional (p; q; t)-space,
called ray segment space, has the following property: a box in
this space represents a shaft of bounded rays (or ray segments) in
world space, connecting two parallel line segments. Together, all
the rays from the patch to the emitter can be conservatively rep-
resented by a box (p0; q0; t0)—(p1; q1; t1), shown on the right
in Figure 5. The dependency region represented by this box in
world space is shown on the left in green.

Extending this discussion to 3D scenes, each line in 3D can
be represented by the four intercepts (p; q; r; s) it makes with
two parallel rectangles surrounding the scene 2. With the addi-
tional t dimension, the ray segment space is a five-dimensional
space. Thus, each blocker list depends on a region of world space
that can be represented by a five-dimensional box in ray segment
space.

5.2 Ray segment trees

The blocker list dependency regions are stored in a data structure,
called the ray segment tree [3], that is used to rapidly identify the
blocker lists affected by a change in the scene. When the local
illumination environment constructor determines a blocker list
for a particular patch-emitter pair, the dependency region of that
blocker list in ray segment space is computed as described in the
previous section. These dependencies, represented as boxes in
ray segment space, are then stored in a ray segment tree that is
constructed over ray segment space. The root of the ray segment
tree represents all ray segments that pass between two parallel
rectangles surrounding the scene. Since there are six such pairs
of parallel rectangles, six ray segment trees are built: one for
each pair of parallel rectangles surrounding the scene.

world space

Emitter L0

Patch p0

Patch p1

Emitter L1

p Axis

q Axis

t A
xi

s

ray segment space

p Axis

t Axis

q Axis

Figure 6: Ray segment trees. Each of the dependency regions in
world space is represented by a box in ray segment space. Ray
segment trees are constructed over this space.

2Six such pairs of parallel rectangles are required to represent all the
rays that intersect a scene.
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Each node in the ray segment tree stores ten coordinates
(p0; q0; r0; s0; t0)—(p1; q1; r1; s1; t1) that define a 5D bound-
ing box in ray segment space. The root node of the tree cor-
responds to the 5D box (0; 0; 0; 0; 0)—(1; 1; 1; 1; 1), and repre-
sents all ray segments that pass through the scene from the front
face to the back face of the ray segment tree. When a ray segment
tree node is subdivided along each of the five axes, thirty-two
children are created. The ray segments represented collectively
by the children include all rays segments represented by the par-
ent. When a ray segment tree node is subdivided, each of the
dependency regions stored in the parent node are copied down
to the appropriate children; the dependency regions are recom-
puted with respect to the new children, to represent the part of
the dependency region that lies in the appropriate child.

Figure 6 shows four patch-emitter pairs in 2D world space and
their corresponding dependency regions, shown as shaded poly-
gons on the left. On the right, the corresponding boxes that rep-
resent each of those dependency regions in the root node of the
corresponding ray segment tree are shown, appropriately shaded.
The blue plane shown in ray segment space is one of the three
cutting planes that subdivide the ray segment tree node shown.

5.3 Identifying affected blocker lists

When the scene changes, for example, by the movement of ob-
jects, addition of new objects, or deletion of existing objects, the
ray segment trees are traversed to find the blocker lists that are
affected. Note that our system treats object movements as object
deletions from the old location and object additions to the new
location; the cost of performing these operations is small enough
that it is not worth optimizing further.

b

subdivided root node

world space ray segment space
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Figure 7: Traversing ray segment trees. When box b is added to
the scene, the ray segment trees are rapidly traversed to find the
affected blocker lists.

Figure 7 depicts the action of the algorithm when a 2D object

with bounding box b is edited. Starting at the root node of the ray
segment tree, b is tested against the shaft that represents the node.
If there is an intersection, b is tested against each of the children
of the ray segment tree node that intersects b. The algorithm
walks down the ray segment tree, recursively testing against the
appropriate ray segment tree nodes until it reaches the leaves.
Then, the algorithm tests against each blocker list stored in the
leaf, to find the patch-emitter pairs that are affected by the edit.

6 Results

6.1 Implementation

The system currently runs on a cluster of eight shared-memory
quad-processor Pentium-III 550 MHz systems. The computers
are connected together by a Myrinet gigabit network, although
the renderer uses only about 40 Mbps of network bandwidth.

Seven machines are used as shaders, and one machine is used
for the local illumination environment constructor. The model
and the blocker lists are duplicated on all eight machines, but
within each machine, all four processors share the model and
blocker lists. One dual processor Pentium-III 550 MHz system
is used for the display of images and for interpreting user input.

All of the code is written in Java 2 and is run using Sun’s JRE
1.2.2. The code has not yet been optimized and we have consis-
tently chosen generality, flexibility, and portability over perfor-
mance. As a result, it is relatively easy to include new types of
primitives and materials with different BRDFs. Communication
is done over standard Java TCP/IP sockets.

The ray tracer is a stochastic ray tracer augmented to support
local illumination environments and dynamic visibility. Area
sampling of the light sources is not purely random: the same
sample points on the emitters are chosen every time, introducing
banding, but removing pixel noise.

6.2 Scene Descriptions

Three models are used to evaluate the performance of these al-
gorithms: Model 1, shown in Figure 8-(a), has approximately
9k patches, one area light source, and purely diffuse materials.
Model 2, shown in Figure 8-(d), is similar to Model 1, except
that it includes a glossy floor and a mirror-like reflective table-
top. Model 3, shown in Figure 9, has approximately 20k patches
and six area light sources.

Rendering results presented in this section report performance
for a 512x512 image. The synchronous component of the ren-
derer uses 28 processors, while the local illumination environ-
ment constructor uses 4 processors. The dynamic visibility mod-
ule has not been parallelized; therefore, all timing results for dy-
namic visibility are on a single processor. All results are pre-
sented for one representative image in the scene, shown in Fig-
ure 8-(c).

6.3 Material properties

Figure 8 shows Model 1 evaluated with some of the different
BRDFs supported by our shaders. Figure 8-(a) includes purely
diffuse surfaces. Figure 8-(b) includes a mirror-like reflective
table-top and a diffuse floor. Figure 8-(c) includes a glossy table.
Finally, Figure 8-(d) includes a mirror-like reflective table-top
and a glossy textured floor. Notice the high quality of the soft
shadows cast by the chairs on the floor, and the reflections of
objects in the table-top.

6
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(a) (b)

(c) (d)

Figure 8: Museum scene with different BRDFs: (a) diffuse materials, (b) reflective mirror-like table-top, (c) glossy table-top, (d)
reflective table-top, glossy textured floor.
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Figure 9: Model 3 with six area light sources.

6.4 Lighting and scene complexity

Our techniques increase in effectiveness with the complexity of
occlusions in a scene. Rendering performance is also improved
when high-quality images with soft shadows are required. Fig-
ures 8 and 9 show images of Model 1, Model 2 and Model 3
produced by our renderer. The images have smooth soft shad-
ows; each image was produced by casting 100 shadow rays per
emitter.

Shadow rays 0 1 20 100
Our system (sec/frame) 0.18 0.24 0.36 0.67
Standard rt (sec/frame) 0.18 0.39 2.76 12.78
Speedup 1 1.63 7.67 19.07

Table 1: Performance and speedup with respect to shadow rays.
As the number of shadow rays increases, our system is up to 20�
faster than the standard ray tracer.

Table 1 presents timing results for Model 1 as the lighting
complexity of the scene increases. As larger numbers of shadow
rays are traced for higher quality soft shadows, our system per-
forms increasingly better than a standard ray tracer. When no
shadow rays are traced, both ray tracers only compute visibility
along each eye ray. Since our algorithm does not accelerate this
computation, there is no speedup for these images. However,
when more shadow rays are cast, our algorithm is up to 20�
faster than the standard ray tracer. Even greater speedups are ob-
tained when more than 100 shadow rays are cast, but this would
not substantially improve image quality. Similar frame rates, 1
to 2 frames per second, are obtained for the more complex scene
in Model 3.

6.5 Patch subdivision

Figure 10 shows the effect of increasing patch subdivision while
constructing blocker lists. As patches are refined, their blocker

lists typically decrease in size, thus improving rendering perfor-
mance. In the figure a color-coded image of Model 1 is shown,
where the colors represents visibility with respect to the single
emitter in the scene. Green represents full visibility, blue rep-
resents full occlusion, and shades of gray represent increasing
numbers of blockers in a partially visible patch. Black repre-
sents only one blocker and white represents ten or more block-
ers. As the minimum patch size decreases from Figure 10-(a)
to Figure 10-(d), the number of gray patches decreases, while
the number of green and blue patches increases. For the gray
patches that remain, the length of the blocker lists decreases, as
can be seen by the darkening of the white patches.

Minimum patch size 1 % 0.1% 0.01% 0.001%
Number of patches 4.5k 5.5k 9k 19k
Our system (sec/frame) 2 0.94 0.67 0.64
Standard rt (sec/frame) 12.78 12.78 12.78 12.78
Speedup 6.4 13.6 19 20

Table 2: Performance and speedup with respect to minimum
patch size. The minimum patch size is specified as a percent-
age of the largest polygon in the scene. As the minimum patch
size decreases, the number of patches increase, and performance
with respect to the standard ray tracer improves.

Table 2 presents system performance as the minimum patch
size decreases. From left to right, patch sizes are decreased by
factors of ten resulting in the number of patches shown in the ta-
ble. The patch sizes are specified as a percentage of the largest
polygon in the scene. As the number of patches increases, our
technique produces increasingly greater speedups, from 6� to
20�, while improving frame rates. Since decreasing the mini-
mum patch size to 0.001% does not substantially accelerate the
ray tracer, we select a minimum patch size of 0.01% for Model 1.
This prevents unnecessary subdivision of patches. This mini-
mum patch size is currently picked manually, but a simple cost
model should be able to predict an appropriate value.

Since most local illumination environments are simple, with
only a few blockers (if any), the memory required to store local
illumination environments is very small: less than 5 MB for these
scenes.

6.6 Dynamic Visibility

Figure 11 shows rendered images produced by our system as the
user moves objects in the scene. Notice the correct shadows cast
by the cube on the floor in Figure 11-(a), and the reflection in
Figure 11-(b). As the box is moved in Figures 11-(c) and (d), the
shadows cast by the left wall on the box and the shadows cast by
the box on the floor and the right wall are correctly updated.

Minimum patch size 1 % 0.1% 0.01%
Time in seconds 0.1-0.9 0.12-1.0 0.3-1.5
Memory in MBs 4.5 6 20

Table 3: Performance of the dynamic visibility module with de-
creasing patch size. The dynamic visibility module responds at
interactive rates. Note that these timing results were obtained on
a single processor.

Table 3 presents timing and memory results for Model 1 as
the cube is moved by the user through the scene. As the number
of patches increases, the time to update affected blocker lists in-
creases from 0.1 up to 1.5 seconds. Memory requirements also
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(a) (b) (c) (d)

Figure 10: Color-coded images show complexity of local illumination environments. Green represents full visibility, blue represents full
occlusion, and shades of gray represent increasing numbers of blockers in a partially visible patch.

increase to store more dependencies. However, even for the patch
size that results in optimal rendering performance (0.01%), the
dynamic visibility module finds all affected blocker lists at inter-
active rates. Also, these timing results were obtained on a single
processor. Therefore, straightforward parallelization of this com-
putation should enable real-time updates.

The memory usage of the algorithm is modest; less than 20
MB. Similar results are obtained for the movement of the box in
Figures 11-(c) and (d).

7 Conclusions

This paper presents an interactive renderer that computes direct
illumination in dynamic scenes with soft shadows and supports
complex BRDFs. A user can both navigate and modify the scene
interactively. To achieve this rendering performance, this pa-
per introduces the concept of the local illumination environment,
which caches visibility information and is reused from frame to
frame. The local illumination model for each patch is the scene
is computed asynchronously and is used by the shaders to ac-
celerate the tracing of shadow rays. Automatic patch subdivision
accelerates rendering performance by simplifying local illumina-
tion environments.

The ray segment tree, a five-dimensional hierarchical data
structure, is used to track dependencies of the local illumina-
tion environments. When the scene is modified, these trees are
rapidly traversed to identify local illumination environments that
are affected by the modification and need to be computed.

We have presented results for a parallel renderer written en-
tirely in Java. Our results show that the system achieves inter-
active performance, with speedups from 10� to 20� in scenes
containing soft shadows. The memory usage of the algorithms
described is modest.

There are several avenues of research that can be explored in
this system. This implementation only used direct lighting local
illumination environments. We would like to extend this concept
to indirect lighting by capturing indirect sources of illumination
in the local illumination environment. The approach of Drettakis
and Sillion [9] can be adapted to this purpose to support dynamic
visibility. Accelerating the eye ray visibility determination would
further improve rendering frame rates. A variety of techniques
seem applicable [1].
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Figure 11: Effect of dynamic object movement: (a)-(b) red cube is moved in Model 1, (c)-(d) brown box is moved in Model 3. Notice
the shadows cast by the moving cubes on the environment.
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[22] Carlo H. Séquin and Eliot K. Smyrl. Parameterized ray tracing. In Computer
Graphics (SIGGRAPH 1989 Proceedings), pages 307–314, July 1989.

[23] Peter Shirley and Changyaw Wang. Monte carlo techniques for direct lighting
calculations. ACM Transactions on Graphics, 15(1), January 1996.

[24] Cyril Soler and Francois X. Sillion. Fast calculation of soft shadow textures
using convolution. In Computer Graphics (SIGGRAPH ’98 Proceedings),
pages 321–332, August 1998.

[25] Michael M. Stark, Elaine Cohen, Tom Lyche, and Richard F. Riesenfeld.
Computing exact shadow irradiance using splines. In SIGGRAPH 99 Con-
ference Proceedings, August 1999.

[26] Seth Teller. Computing the antipenumbra cast by an area light source. Com-
puter Graphics (Proc. Siggraph ’92), 26(2):139–148, 1992.

[27] Seth Teller, Kavita Bala, and Julie Dorsey. Conservative radiance interpolants
for ray tracing. In Seventh Eurographics Workshop on Rendering, pages 258–
269, June 1996.

[28] Andrew Woo. Fast ray-polygon intersection. In Andrew S. Glassner, editor,
Graphics Gems. Academic Press, San Diego, 1990.

11


