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Abstract

Algorithms and computational complexity measures for
simulating the motion of contacting bodies with friction are
presented. The bodies are restricted to be perfectly rigid bodies
that contact at finitely many points. Contact forces between
bodies must satisfy the Coulomb model of friction. A traditional
principle of mechanics is that contact forces are impulsive if and
only if non-impulsive contact forces are insufficient to maintain
the non-penetration constraints between bodies. When friction is
allowed, it is known that impulsive contact forces can be neces-
sary even in the absence of collisions between bodies. This paper
shows that computing contact forces according to this traditional
principle is likely to require exponential time. An analysis of this
result reveals that the principle for when impulses can occur is too
restrictive, and a natural reformulation of the principle is pro-
posed. Using the reformulated principle, an algorithm with
expected polynomial time behavior for computing contact forces
is presented.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling; I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism

Additional Key Words and Phrases: dynamics, friction, simula-
tion, NP-complete

1. Introduction
The synthesis of realistic motion is one of the goals of

computer graphics. Recently, much attention has been given to
physically based simulation methods, and in particular, rigid body
simulation. To achieve realism, simulations must incorporate the
effects of friction between contacting bodies. If the total number
of contact points is small, for instance one to four, the effects of
friction are easily computed. However, as the number of contact
points grows, the problem becomes considerably more challeng-
ing. Simulation algorithms with exponential (in the number of
contact points) running times are known[5] but are impractical for
problems involving as few as 10 to 15 contact points. In order to
make rigid body simulations with friction practical for computer
graphics, efficient, polynomial time algorithms are needed.

This paper considers the problems of computing friction
forces for configurations of perfectly rigid bodies with a finite
number of contact points. For polyhedral bodies, only the vertices
of the line segment and polygonal contact regions are considered
as contact points. Unless otherwise stated, it is assumed that

bodies are not colliding at any contact point. No restriction is
placed on the allowable sliding motion between bodies at contact
points. Forces at contact points are classified as either normal or
friction forces. Normal forces prevent inter-penetration by acting
perpendicularly to the contact surfaces. Friction forces act
tangentially to the contact surfaces and oppose slipping motion.
The friction force at a contact point is called dynamic friction if
the two bodies are slipping at the contact point; otherwise, the
friction force is called static friction. The contact forces (the nor-
mal and friction forces) must satisfy the Coulomb model of fric-
tion. The Coulomb model of friction is a well accepted empirical
relationship between the normal and friction force at a contact
point.

An important first step to coping with the problems of fric-
tion is understanding the simulation behavior specified by the
Coulomb model of friction. We need to know both what kind of
result the model specifies and the degree of difficulty in comput-
ing that result. When computing contact forces, a principle of
rational mechanics called the principle of constraints [9] is usually
accepted. The principle of constraints states that constraints
should be satisfied by non-impulsive forces if possible; otherwise,
impulsive forces should be used to satisfy constraints. (Impulsive
forces, or impulses, have the units of mass times velocity and
discontinuously change velocities; impulses most commonly arise
when bodies collide. Non-impulsive forces, or just forces, have
the units of mass times acceleration and cannot produce velocity
discontinuities.) The first result of this paper is a proof that com-
puting friction forces according to the principle of constraints is
likely to require exponential time (section 5). Under the Coulomb
friction model, even in the absence of collisions it is sometimes
necessary to introduce impulses between contacting bodies to
prevent inter-penetration. Adopting the principle of constraints
requires that a particular behavior, non-impulsive contact forces,
be searched for among possibly exponentially many other choices,
whenever possible. In formal terms, we will prove that deciding
if non-impulsive contact forces are sufficient to prevent inter-
penetration is NP-complete. Essentially, this means that an
efficient (that is, polynomial time) algorithm for computing con-
tact forces is widely believed not to exist. (See Garey and John-
son[7] for a discussion on P, NP, NP-complete and NP-hard
problems).

However, the preference for non-impulsive behavior is nei-
ther necessary nor justified. Using insights from the NP-
completeness results of section 5, section 6 presents a physical
model for contact that argues against the principle of constraints.
We will use this model to reformulate the problem of computing
contact forces. Using the reformulated problem, we present an
efficient algorithmic simulation method for dealing with dynamic
friction. The algorithm has an expected running time that is poly-
nomial in the number of contact points of the configuration. This
is the first efficient algorithm we know of for computing dynamic
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friction forces.

As a first step towards dealing with both static and
dynamic friction, we present two preliminary approaches for com-
puting static and dynamic friction forces (section 8). The first
approach approximates both static and dynamic friction by using
the general algorithm for dynamic friction. The second approach
uses an iterative technique to compute static and dynamic friction
forces; however, convergence is not guaranteed.

2. Definitions
For configurations without friction, a valid set of contact

forces is a set of normal forces satisfying three conditions. First,
the normal force at each contact point must be oriented to "push"
the bodies apart. Second, the normal forces must be sufficient to
prevent inter-penetration between bodies. Third, if two bodies are
separating at a contact point, the normal force at the contact point
must be zero. For configurations without friction, a valid set of
contact forces exists for any configuration of bodies. Although a
valid set of contact forces is not necessarily unique for frictionless
configurations, all valid contact forces yield the same accelera-
tions of the bodies in the configuration[4]. Contact forces for fric-
tionless configurations with n contact points can be found by for-
mulating and solving a convex quadratic program (QP) of n vari-
ables. Methods for formulating this QP for bodies composed of
polyhedra and curved surfaces have been presented in [1, 2, 6, 12].
Convex QP’s with n variables can be solved in time polynomial to
n and in practice are solved by algorithms whose worst case
behavior is exponential but whose expected running time is poly-
nomial[14].

Configurations with friction are more complicated. Con-
tact forces with friction are valid if they satisfy both the previous
three conditions for normal forces and the Coulomb friction
model (sections 4 and 8). Valid contact forces for configurations
with just dynamic friction (and no static friction) can be found, as
in the frictionless case, by computing the solution to a QP. Unlike
the frictionless case though, the QP associated with a
configuration involving dynamic friction is not necessarily con-
vex. The existence of a practical solution method for non-convex
QP’s is considered unlikely, because solving non-convex QP’s is
NP-hard.

Additionally, it is possible that the QP for a configuration
with dynamic friction may not even have a solution. Although the
Coulomb friction model is well accepted, it has been known for at
least a century that configurations of rigid bodies with dynamic
friction exist that have no valid set of contact forces. We call
such a configuration inconsistent . Conversely, there are also
configurations with dynamic friction where neither the set of valid
contact forces nor the accelerations resulting from those contact
forces are unique. Such a configuration is called indeterminate .
(See sections 4.1 and 4.2).

3. Previous Work
Wang and Mason[16] present a detailed discussion on sin-

gle contact point collisions involving friction; in particular,
methods for computing the contact impulse resulting from the col-
lision are described. (We will not consider the general problem of
collisions involving friction in this paper). Mason and Wang[13]
discuss inconsistent configurations and explain how to resolve the
inconsistency by applying impulsive contact forces to the
configuration. However, it is first necessary to identify
configurations as inconsistent. As we will show, this turns out to
be a difficult problem.

A paper by Lötstedt[12] discusses a simulation method that
avoids inconsistency by modification of the friction law.

Lötstedt’s method changes the Coulomb model into a relation
between normal forces from the previous time step and friction
forces from the current time step. Lötstedt’s method approxi-
mates both dynamic and static friction by solving a convex QP. It
is not clear that Lötstedt’s method can always be initialized so that
it is numerically stable. It is also unclear how to perform such an
initialization efficiently.

4. Contact Force Model
We begin by considering configurations with only dynamic

friction. Static friction is not considered until section 8. This sec-
tion introduces a special-case of a single contact point
configuration (figure 1). This configuration, and minor variations
of it, will be used several times throughout this paper.

In figure 1, body A is a thin rod of length two with a sym-
metric mass distribution that contacts body B at a single contact
point. Body B (the "base") is fixed.

Variablesiiiiiiii

pa contact point p
.

a contact point velocity
n̂ unit surface normal t̂ unit surface tangent
m A’s mass I A’s moment of inertia
ω→ A’s angular velocity µ coefficient of friction
g gravitational acceleration

Relationsiiiiiiii

I =
16
mhhh θ = 72° 16(cos2θ − µcosθsinθ) = −2

(gravity)
−mgn̂

n̂

t̂ pa

A

B

θ
p
.

a

Figure 1. A one contact point configuration with dynamic fric-
tion between a thin rod A and a fixed base B.

By choosing A’s angular velocity ω→ and the magnitude g of the
gravity force −mgn̂ acting on A, an indeterminate and an incon-
sistent configuration can be produced. This particular example
can be found in a number of papers; for example, Lötstedt[11],
Erdmann[5], or Mason and Wang[13].

For a given value of ω→, the linear velocity of A is chosen
such that the point pa on A has a non-zero velocity tangent to B,
and zero velocity normal to B. The unit vector n̂ is normal to the
surface of B. The unit vector t̂ is tangent to the surface of B, and
is directed opposite to the motion of the point pa; n̂ and t̂ are per-
pendicular. The particular values of I, θ and µ (µ ∼∼ 3⁄4) given in
figure 1 are somewhat arbitrary; these values are chosen to sim-
plify later computations.

The Coulomb model of friction states that since pa is slid-
ing across B, a friction force in the direction t̂ acts on A. (An
equal and opposite friction force acts on B, but B is fixed.) If the
normal force acting on A has magnitude f, then the Coulomb fric-
tion model states that the friction force has a magnitude of µf
(figure 2). The net contact force acting on A is

f n̂ + µf t̂ = f(n̂ + µt̂). (1)
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n̂

t̂

A

B

f n̂

µf t̂

f n̂ + µf t̂

Figure 2. Normal and friction forces acting on A.

What effect do the contact and external force −mgn̂ have
on A? In appendix A, the component of acceleration of the point
pa , normal to B, is found to be

n̂ .p
..

a = −
m
fhhh + ( | ω→ | 2sinθ − g). (2)

This configuration has the odd property that as the normal force
magnitude f is increased , the point pa is accelerated more
strongly towards B! Geometrically, the direction of the net con-
tact force f(n̂ + µt̂) does not change as f is increased. However,
as f is increased, the torque due to friction causes pa to angularly
accelerate downward. The normal force fn̂ also causes the center
of mass of A, and thus pa , to accelerate upwards, but not fast
enough to overcome the downwards acceleration due to the
torque. The net result is that increasing f decreases the value of
n̂ .p

..
a . (See appendix A for details).

4.1 An Indeterminate Configuration

To produce an indeterminate configuration, let ω→ and g
satisfy | ω→ | 2sinθ − g = 1. Then equation (2) becomes

n̂ .p
..

a = −
m
fhhh + 1. (3)

Recall that valid contact forces satisfy three conditions. The first
condition, that the normal force "push" bodies apart is simply
f ≥ 0. The second condition, that contact forces prevent inter-
penetration, requires the acceleration of pa in the n̂ direction to be
non-negative. This yields the constraint n̂ .p

..
a ≥ 0. The last condi-

tion is that if the bodies are separating, the normal force must be
zero. Since the bodies are separating if and only if n̂ .p

..
a is strictly

positive, this condition may be written as f n̂ .p
..

a = 0. For
| ω→ | 2sinθ − g = 1 and using equation (2), the above three condi-
tions are

f ≥ 0, −
m
fhhh + 1 ≥ 0 and f(−

m
fhhh + 1) = 0. (4)

The valid contact forces are given by the solution of equation (4);
f = 0 and f = m.

For the f = 0 solution, n̂ .p
..

a = 1. In this solution, the cen-
tripetal acceleration of p

..
a is stronger than the force of gravity pul-

ling A down; thus, A merely continues its rotation and the point pa
moves off of B (figure 3a).

In the second solution, f = m and n̂ .p
..

a = 0. A normal force
of mn̂ and a friction force of µmt̂ act on A. The torque generated
by friction balances the centripetal acceleration of pa; as a result,
A and B do not break contact (figure 3b). Note that the only valid
values of f are f = 0 or f = m. Since the solutions produce dif-
ferent accelerations for A, the configuration is indeterminate.

pa

A

B

−mgn̂

ω→

(a) f = 0

A

B

−mgn̂

ω→

mn̂

µmt̂

(b) f = m

Figure 3. (a) The contact force between A and B is zero. pa ro-
tates to the left and up, breaking contact with B. (b) The nor-
mal and friction forces balance gravity and centripetal ac-
celeration; pa moves horizontally and maintains contact with
B.

4.2 An Inconsistent Configuration

Now suppose that | ω→ | = 0 and A’s linear velocity v→ is
opposite t̂ (figure 4). Then the condition n̂ .p

..
a ≥ 0 is

n̂ .p
..

a = −
m
fhhh − g ≥ 0. (5)

However, if g> 0 (figure 4a), then no positive value of f
can prevent pa from accelerating downwards and thus inter-
penetrating; that is, equation (5) cannot be satisfied by any f > 0.
This means that the configuration is inconsistent. The existence
of such a configuration may seem counter-intuitive; however, we
will have more to say on this phenomenon in section 6.1.

Note that the value of g is crucial. If g = 0, so that no exter-
nal force acts on A, then f = 0 becomes the (unique) valid contact
force (figure 4b). Any positive value of f for this configuration
causes inter-penetration. Figure 4b corresponds to pa "skimming"
horizontally over B, with neither a normal force nor a friction
force exerted on A. If g becomes even slightly positive however,
the configuration is inconsistent. Note that the requirement that B
be fixed is not crucial. If B is massive compared to A, then incon-
sistency occurs if an external force acts on A to accelerate it
towards B, or vice versa.

A

B

−mgn̂

f n̂

µf t̂

v→

(a) no solution for f

pa

A

B

v→

(b) f = 0

Figure 4. (a) An inconsistent configuration. For any f ≥≥ 0, pa is
accelerated downwards into B. (b) The configuration has a
unique solution of f = 0 when gravity is removed; A skims
along the surface of B.
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5. An NP-complete Class of Configurations
We define the frictional consistency problem as the prob-

lem of deciding if a given configuration is consistent. In this sec-
tion, we prove that the frictional consistency problem is NP-
complete. We begin by showing that the frictional consistency
problem lies in NP and then show that the frictional consistency
problem is NP-hard. Although the configurations constructed in
this section seem contrived (and arguably are), the NP-hardness
result has grave implications even when inconsistency is not a
concern during simulation.

Definition. An instance of the frictional consistency problem is a
configuration C of bodies that contact at n distinct contact points.
The physical properties of each body (mass, moment of inertia,
linear and angular velocity, position and orientation, and external
forces) are described by rational numbers. The specifics of a con-
tact point (position, coefficient of friction, surface normal) are
also described by rational numbers. The relative motion between
bodies at contact points with friction is non-zero in the direction
tangent to the contact surface and zero in the direction normal to
the contact surface. The notation | C | = k means that
configuration C is describable in k bits. Clearly k > n.

Theorem 1. The frictional consistency problem lies in NP.

Proof. Given an instance of C, a QP of size n with the following
two properties exists. (1) If C is consistent, then an n-vector x→

that is a solution to the QP exists. The set of contact forces such
that the magnitude of the normal force at the ith contact point is xi
is a valid set of contact forces for the configuration C. (2) Other-
wise, if C is inconsistent, the QP has no solution. The specifics of
constructing the QP can be found in [6]. The numerical quantities
in the QP are computed from the rational entries of C in a total of
O(n 3) arithmetical operations. The QP can therefore be con-
structed in time polynomial to k. Vavasis[15] has recently shown
that quadratic programming lies in NP. It follows from this that
deciding frictional consistency is also in NP. a

In order to show that deciding frictional consistency is
NP-hard, we reduce the NP-complete problem "subset sum" to
the frictional consistency problem.

Definition. An instance of the subset sum problem is a pair (A,S)
where A = {a1, . . . , an} is a set of positive integers and S is a
single positive integer. A subset sum instance (A,S) is satisfiable
if there exists a subset A′⊂ A such that

a∈A ′
Σ a = S. (6)

Deciding if an instance of the subset sum problem is satisfiable is
an NP-complete problem[7].

To show that deciding frictional consistency is NP-hard we
take an arbitrary instance (A,S) of the subset sum problem and
construct (in polynomial time) a configuration of bodies C. The
configuration C will have the property that C is consistent if and
only if (A,S) is satisfiable.

Theorem 2. Deciding frictional consistency is NP-hard.

Proof. Consider the configuration of figure 5. Body B of figure 5
is initially at rest and is positioned by four fixed triangular wedges
that contact B without friction. Body B is therefore free to move
horizontally, but can neither rotate nor move vertically. On either
side of body B are thin rods E 1 and E 2. E 1 and E 2 have no angu-
lar velocity and have a linear velocity as indicated. E 1 and E 2
contact B in the same manner as the configuration of figure 4
(although the frames of reference for E 1 and E 2 are rotated by 90°
with respect to figure 4). In figure 4, inconsistency occurred if
external forces accelerated A towards B or vice versa. The same
holds true for figure 5. If B has an acceleration leftwards

v→ v→

E 1 E 2

B

Figure 5. B is constrained by the fixed wedges and can only
move horizontally. However, the configuration is consistent
only if B is not subject to a net horizontal force.

(towards E 1), then inconsistency occurs. Likewise, if B has an
acceleration rightwards (towards E 2), then inconsistency also
occurs. Thus, the configuration of figure 5 is consistent only if the
net horizontal acceleration of B is zero. In this case, the rods E 1
and E 2 skim along the surface of B as in figure 4b.

Now consider figure 6, where a collection of thin rods
R 1, . . . , Rn have been added. In addition, an external horizontal
force with magnitude µS acts on B, trying to accelerate B to the
right. Each rod Ri has mass mi . The configuration between each
rod Ri and B is the same as the configuration of figure 3; thus each
rod Ri has angular velocity ω→ and is subject to an external gravity
force. Let fi be the magnitude of the normal force between Ri and
B. As in figure 3, the only valid solutions for fi are fi = 0 and
fi = mi . If fi = 0, then no friction force acts between Ri and B.
Otherwise, fi = mi and a friction force of magnitude µmi acts
between Ri and B. The friction force pushes Ri to the right and B
to the left, with magnitude µmi . The friction force on B therefore
acts to oppose the external force of magnitude µS.

µf 1 µf 2 µfn

ω→ ω→ ω→
µS

R 1 R 2 RN

...

v→ v→

E 1 E 2

B

Figure 6. The configuration is consistent if and only if the fric-
tion forces on B sum to µµS.

In order for the configuration of figure 6 to be consistent, B
must have no net horizontal acceleration. This means that the
friction forces exerted on B from the n rods must sum to µS,
balancing the external force applied to B. Thus, the configuration
is consistent if and only if

i = 1
Σ

n

µfi = µS. (7)

Since each fi is either 0 or mi , the configuration is consistent if
and only if some subset of {m 1, . . . , mn} sums to S.

We can now perform the reduction from subset sum to
show NP-hardness. Given any set A = {a 1, . . . , an} and any tar-
get sum S, construct the configuration of figure 6. Assign mi = ai
for 1 ≤ i ≤ n, and let an external horizontal force of µS act on B as
shown in figure 6. By the above discussion, the configuration is
consistent if and only if there exists a subset of {m 1, . . . , mn}
that sums to S. But since A = {m 1, . . . , mn}, the configuration is
consistent if and only if (A,S) is satisfiable. We conclude that the
problem of deciding frictional consistency is NP-hard. a
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Theorem 3. Deciding frictional consistency is NP-complete.

Proof. The result follows immediately from Theorem 1 and
Theorem 2. a

Corollary 1. Computing contact forces (if they exist) for a
configuration is NP-hard.

Proof. Since deciding if a set of contact forces exists is an NP-
complete problem, computing the contact forces (if they exist) is
an NP-hard problem. a

5.1 Implications

At this point, it may seem that the above results, while pos-
sibly of some (marginal) theoretical interest, have no bearing on
any practical problem. Certainly, the above configurations were
carefully constructed to produce configurations whose consistency
was difficult to determine. But how likely is it that a
configuration this carefully constructed could occur during simu-
lation? For that matter, suppose the occurrence of any incon-
sistent configuration is so unlikely that the possibility can be com-
pletely disregarded. (This may be a reasonable assumption. We
have not encountered an inconsistent configuration during simula-
tion when µ < 1.) Can a polynomial time algorithm that com-
putes contact forces only for consistent configurations be con-
structed? The answer to this is no, unless it turns out that P and
NP are equivalent, and it is widely believed that they are not.

Corollary 2. A polynomial time algorithm for computing valid
contact forces for consistent configurations exists if and only if
P = NP.

Proof. Suppose that P = NP. Since quadratic programming lies
in NP, P = NP implies a polynomial time algorithm for finding
the solution to a QP. Since valid contact forces for a consistent
configuration of bodies can be found by solving an associated QP,
valid contact forces are computable in polynomial time if P = NP.

Conversely, suppose that contact forces for consistent
configurations can be computed in polynomial time. Then there
exists a machine M and a polynomial p with the following
behavior. Whenever M is given a consistent configuration C as
input, M outputs a valid set of contact forces within time p( | C | ).
M’s behavior when C is inconsistent is undefined. Given any
configuration C, not necessarily consistent, M can be used to
decide consistency in polynomial time as follows.

Let C be input to M and run for p( | C | ) time. If M fails to
output within this time, then C is inconsistent. Otherwise, M has
produced some output. Since deciding frictional consistency is in
NP, the validity of M’s output can be decided in an additional
amount of time that is also a polynomial function of | C | . If M’s
output is a valid set of contact forces, then clearly C is consistent.
If M’s output is invalid, then C must be inconsistent (else M
would have output a valid answer). In any event, the consistency
of C has been decided in polynomial time.

Since deciding consistency is NP-complete, we conclude
that the existence of a polynomial time algorithm for computing
contact forces on consistent configurations would imply that
P = NP. a

Given the above conclusions, it is unlikely that an efficient
algorithm for computing contact forces can be found. This
depressing result can be viewed in several ways. First, the simu-
lation of rigid bodies with friction can be considered an intract-
able problem, unless the number of contact points with friction in
a configuration is small. Second, the general simulation problem
can be rejected as being too difficult a problem, although we
might hope to find some natural class of configurations with fric-
tion for which contact forces can be computed efficiently. Such a
class would have to be sufficiently general to cover situations

likely to be encountered in practice. Third, heuristic methods for
computing contact forces can be considered. However, this is
essentially the same as hoping to find a natural class of
configurations with easily computed contact forces. Rather than
adopt any of these viewpoints, the next section presents a physical
model of inconsistency that leads to a natural reformulation of the
problem of computing contact forces.

6. Physical Models
In this section, a physical model for both inconsistency and

indeterminacy is presented. Certainly, other models are possible,
and a different choice of model might lead to different conclu-
sions and results. The model in this section was developed in
order to understand the behavior of inconsistent and indeterminate
configurations. After the model was developed, we found that the
model leads to a natural refutation of the principle of constraints.
By abandoning this principle, the problem of computing contact
forces is naturally reformulated and a correspondingly efficient
way of computing contact forces is found. The model in this sec-
tion is not an ad hoc attempt at dealing with friction. We feel
that the model is not unreasonably based on the physical proper-
ties of rigid bodies, and sensible in the context of simulating rigid
bodies with friction. The model and subsequent reformulation of
the problem is presented in this section. In the next section, a
computational algorithm is presented for solving the reformulated
problem.

The motivation of a physical model stems from the need to
answer the following basic question: what should be the result of
a simulation when inconsistency is encountered? For inconsistent
configurations, such as figure 4a, the only resolution is the intro-
duction of an impulsive contact force at pa[9, 13]. Impulses, how-
ever, arise from collisions between bodies. Given the fact that pa
has no velocity normal to B (so that A and B do not appear to be
colliding), why should an impulse be applied between A and B?
We answer this by presenting our physical model of incon-
sistency.

The physical model we present is based on questioning the
rigid body assumption. In the physical world, there is of course
no such thing as a perfectly rigid body. For near rigid bodies,
contact forces arise as a result of small elastic deformations in the
neighborhood of the contact area. Rather than geometrically
model deformations, we shall (conceptually) allow bodies to
inter-penetrate slightly, and consider a deformation in the contact
surfaces proportional to the amount of inter-penetration. (We do
not of course imagine that real bodies actually inter-penetrate).
As the inter-penetration depth increases, a restoring normal force
acts to oppose the inter-penetration. This is the so called "penalty
method", a simulation method that models contact between bodies
as spring and damper systems. The normal force between two
bodies is zero when the amount of inter-penetration is zero, and
increases monotonically as the inter-penetration increases. Typi-
cally, the normal force is modeled as a linear spring force −Kd,
where K is the spring constant and d is the amount of inter-
penetration. Although this is a very useful conceptual model, it is
not well suited to simulation of very rigid bodies[1, 3]. We will
use the penalty method to conceptually model inconsistency and
indeterminacy, but we will not use the penalty method as a simu-
lation technique.

6.1 A Model of Inconsistency

Figure 7 shows the behavior of the inconsistent
configuration of 4a when the penalty method is applied. At time
t 0, consider the tip of the rod, pa , to be resting exactly on B, with
zero inter-penetration. Since there is no inter-penetration, the nor-
mal force is zero. Even though pa is sliding along B, the friction
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pa

A

B

n̂ .p
..

a

−mgn̂

Time t 0:
zero inter-penetration

−mgn̂

A

B

Kd 1(n̂+µt̂ )

n̂ .p
..

a

Time t 0 + ∆t :
d 1 inter-penetration

Figure 7. At time t 0 , only gravity acts on A. At time t 0 + ∆∆t, the
inter-penetration distance is d 1 and both a penalty and a grav-
ity force act on A, causing pa’s downwards acceleration to in-
crease.

force is zero since the normal force is zero. Since the only force
acting on A is the external gravity force −mgn̂, pa accelerates
downwards. At time t 0 + ∆t, pa has inter-penetrated B by an
amount d 1, so a normal force Kd 1 n̂ acts on A. Since pa is still
sliding, a friction force of µKd 1 t̂ also acts on A. The net result,
from equation (2), is that this causes pa to accelerate downwards
even faster than before. As the penalty force continues to
increase, it causes more inter-penetration between A and B; a form
of positive feedback. Accordingly, both the friction and the nor-
mal force increase, and the cycle continues. Since we are trying
to model A and B as rigid bodies, the spring constant K must be
allowed to be arbitrarily large. (It is this feature that makes the
penalty method ill-suited to rigid body simulation). The larger K
is, the faster inter-penetration increases and the faster the normal
and friction forces build.

Recall that the friction force opposes the sliding motion of
A across B. By making K arbitrarily large, the friction force
brings pa to rest (horizontally) in an arbitrarily short time. Now,
suppose K is adjusted so that pa comes to rest within time ∆t.
Then the amount of inter-penetration is O(∆t 2), since the vertical
distance traveled by pa depends quadratically on the time for
which it travels. In the limit as K goes to infinity, the contact
force on A acts as an impulse and instantaneously brings pa to rest
horizontally, without inter-penetration occurring. This impulse
also causes pa to acquire a normal velocity towards B, bringing
them into colliding contact. The (second) impulse resulting from
this colliding contact can be computed according to [16].

Once pa is at rest horizontally, dynamic friction is replaced
by static friction. The Coulomb friction model states that the
magnitude fstatic of static friction satisfies fstatic ≤ µf whereas
fdynamic = µf for dynamic friction. (Actually, µ is typically larger
for static friction than dynamic friction, but this has no bearing on
the model being developed.) Because static friction is less con-
strained than dynamic friction, once static friction occurs, a valid
solution exists and the inconsistency is removed.

6.2 A Model of Indeterminacy

Consider the indeterminate configuration of figure 3, which
has solutions f = 0 and f = m. Using the penalty method, the
indeterminacy can be removed by assuming some amount of ini-
tial inter-penetration between A and B. If the initial inter-
penetration between A and B is zero (figure 8) then no normal

pa

A

B

n̂ .p
..

a

−mgn̂

ω→

Time t 0:
zero inter-penetration

−mgn̂

n̂ .p
..

a

A

B

ω→

Time t 0 + ∆t :

Figure 8. The initial inter-penetration is zero and only gravity
acts on A. The centripetal acceleration of A pulls pa away from
B and contact is broken.

force exists, and contact is immediately broken (due to the cen-
tripetal acceleration of pa away from B). The behavior is the
same as in figure 3a. However, if the initial inter-penetration pro-
duces a normal force magnitude of m, then the normal and friction
forces prevent A from breaking contact with B. In figure 9, let the

initial inter-penetration d 1 be
K
mhhh .

n̂ .p
..

a = 0

A

B

−mgn̂

ω→

Kd 1(n̂+µt̂ )

Time t 0:
d 1 inter-penetration

n̂ .p
..

a = 0

−mgn̂

A

B

ω→

Kd 2(n̂+µt̂)

Time t 0 + ∆t :
d 2

∼∼ d 1 inter-penetration

Figure 9. The initial inter-penetration is d 1 . Both gravity and
a penalty force act on A. A slides and falls without breaking
contact with B.

Then the normal force magnitude at time t 0 is m. Since pa is slid-
ing on B, a friction force acts on A as shown. As A falls, main-
taining contact with B, the inter-penetration varies smoothly, pro-
duce a varying normal force. At time t 0 + ∆t, A still inter-
penetrates B by an amount d 1

∼∼ d 2, and the behavior of the
configuration is that of figure 3b. Thus, the initial amount of
inter-penetration determines which behavior occurs.

The simulation method of computing and applying contact
forces and impulses to bodies does not model inter-penetration.
Instead of determining behavior by initial choice of inter-
penetration, we can consider an initial normal force between
bodies at contact points, and use that to determine subsequent
behavior. For the applications we are interested in, we generally
have no basis for preferring one set of initial normal forces over
another. The numerical routines used for solving the contact force
equations arbitrarily determine the behavior simulated. This may
or may not be sensible for other applications.
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6.3 The Principle of Constraints

The principle of constraints, applied to configurations with
friction, states the following: when computing forces for a
configuration of bodies, impulsive forces should be used only if
non-impulsive forces do not exist for the configuration. In other
words, if a configuration is consistent, non-impulsive forces
should be computed and applied to the configuration; otherwise
impulsive forces must be introduced into the system. Initially,
this seems like a sensible principle, but we know of no real
justification for it. If the physical model presented in this section
is adopted, then this principle must be abandoned (at least in the
context of rigid body simulation).

Consider figure 10. Once again, the combination of gravity
and the angular velocity of R 1 is the same as in figures 5 and 6.
Similarly, a horizontal acceleration of B results in inconsistency.

µf 1

ω→

R 1

v→

E 1

B

Figure 10. f 1 must be either 0 or m 1 to be valid. However,
f 1 = m 1 causes inconsistency. The only valid solution is f 1 = 0.

If E 1 is ignored for the moment, then both f 1 = 0 and f 1 = m 1 are
valid solutions for f 1. The only valid solution for the
configuration as a whole though, is f 1 = 0; f 1 = m 1 pushes B to
the left, causing inconsistency. However, using the physical
model of indeterminacy, the value f 1 assumes depends on the ini-
tial inter-penetration between R 1 and B. If we adopt the physical
model presented, we must conclude the following: even though
the configuration is consistent, there is no a priori reason to
prefer impulse-free behavior to non-impulse-free behavior for this
configuration. The inconsistency resulting from f 1 = m 1, and sub-
sequent application of impulsive contact forces is as acceptable a
behavior as the application of non-impulsive contact forces
resulting from f 1 = 0. Even though the configuration in figure 10
has only one valid solution of contact forces, (f 1 = 0), it has two
possible behaviors and is thus indeterminate.

6.4 Reformulating the Contact Force Problem

Up to now, we have viewed the problem of computing
valid contact forces as: given a configuration, efficiently compute
a valid set of contact forces, if they exist . This viewpoint is based
on the principle of constraints; that is, impulsive forces should be
applied if and only if the configuration is inconsistent. It is this
absolute insistence on a non-impulsive solution, if it exists, that
makes the problem of computing contact forces so difficult. How-
ever, now that we have abandoned the principle of constraints, a
different viewpoint of the problem is possible.

We reformulate the problem of computing contact forces
as: given a configuration, efficiently compute either a valid set of
contact forces or a valid set of contact impulses. (Validity for
contact impulses is defined in section 7). Under the physical
model we have assumed, there is no intrinsic reason to prefer
valid contact forces over valid contact impulses.

By computing a particular set of valid contact forces or
impulses, a particular behavior is chosen for the configuration,
and other possible behaviors ignored. This means that we do not

bother to decide if a configuration is consistent or not. If a valid
set of contact impulses are computed, it will not be known if the
configuration was consistent and could have been solved with
contact forces; however, this is unimportant. In the next section,
an efficient method is presented for computing valid contact
forces or impulses.

7. Computing Valid Contact Forces and Impulses
Before an efficient method for computing either contact

forces or impulses can be considered, the definition of validity
must be extended to cover contact impulses. We first define vali-
dity for contact impulses and then present a computational algo-
rithm.

7.1 Valid Contact Impulses

In the penalty method interpretation of figure 7, an impulse
occurred because no matter how strong the normal force became,
it was insufficient to prevent inter-penetration. As a result, after
the contact impulse was applied, the relative velocity of the bodies
at the contact point was directed inwards. Since contact impulses
may need to be applied to configurations involving more than one
contact point, validity must be defined for a set of contact
impulses. For example, in figure 10, if the f 1 = m 1 behavior is
chosen, a contact impulse should occur between E 1 and B. How-
ever, there should be no contact impulse between R 1 and B. In
order for our definition of validity to be useful, all inconsistent
configurations should have a valid set of contact impulses. We
show in section 7.2 that our definition of validity for contact
impulses satisfies this requirement.

We call a set of contact impulses valid under the following
two conditions. First, the contact impulses must convert at least
one of the contact points with dynamic friction to static friction.
Second, every contact point at which a contact impulse occurs
must end up with a non-positive relative normal velocity; that is,
after the contact impulses are applied, bodies should not be
separating wherever contact impulses occurred. The justification
for this is that the contact impulses occur only when the normal
force grows without bound to oppose inter-penetration. Intui-
tively, valid contact impulses are the limiting result of increasing
normal forces without bound under the penalty method. If bodies
are separating at a contact point after contact impulses are applied,
then the normal force at the contact point should not have grown
without bound into a contact impulse. As in section 6.1, bodies
will be colliding at some contact points after valid contact
impulses are applied, and a secondary set of impulses will have to
be applied. These impulses may be calculated according to [16].

7.2 Computing Contact Forces and Impulses with Lemke’s
Algorithm

How can either contact forces or impulses be computed
efficiently, given that computing contact forces alone is hard? In
section 3, it was stated that every configuration of n contact points
had an associated quadratic programming problem of n variables.
Let a set of valid normal force magnitudes (if it exists) be denoted
by the unknown n-vector f

→
; the magnitude of the ith normal force

is given by f
→
i . If f

→
exists, it can be found by solving the QP

f
→

minimize f
→T(A f

→
+ b

→
) subject to

I
K
L A f

→
+ b

→
≥ 0

→
f
→

≥ 0
→

(8)

where A and b
→

are determined by the configuration. A is an n ×n
inverse mass matrix and b

→
is an n-vector of known external and

inertial accelerations. A f
→ + b

→
represents the relative accelera-

tions at contact points. (See [1, 2, 6, 12] for a discussion of the
numerical properties of A and methods for computing A). Every
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f
→

such that equation (8) attains zero is valid. If equation (8) can-
not attain zero subject to the above restrictions, then the
configuration has no valid solution and is inconsistent. Thus, a
valid f

→
is a solution to the equation

f
→T(A f

→
+ b

→
) = 0, f

→
≥ 0 and A f

→
+ b

→
≥ 0

→
. (9)

Equation (9) is what is known as a linear complementarity (LCP)
problem. Equation (9) is called a positive semidefinite (PSD)
LCP if A is PSD[14].

One of the first algorithms for solving linear complemen-
tarity problems was introduced by Lemke[10] and is known as
Lemke’s algorithm. Lemke’s algorithm is a pivoting method,
similar to the simplex method of linear programming and has
similar numerical properties. The algorithm is exponential in the
worst case, but has an expected running time polynomial in n[14].
Lemke’s algorithm progresses, like the simplex method, by trying
various descent directions. If an LCP is PSD and has no solution
then Lemke’s algorithm will at some point encounter an
unbounded ray ; a descent direction along which one can travel
infinitely far without making any progress. Otherwise, if a PSD
LCP has a solution, then no unbounded ray exists for that LCP,
and Lemke’s algorithm terminates by finding a solution to the
LCP. The algorithm is viewed as a practical solution method to
the problem of solving PSD LCP’s.

However, for non-PSD LCP’s, Lemke’s algorithm is not
guaranteed to terminate correctly (although it still takes only
expected polynomial time to do so). For a non-PSD LCP, if there
is no solution, Lemke’s algorithm terminates by encountering an
unbounded ray. Unfortunately, if there is a solution, the algorithm
is not guaranteed to find it. For non-PSD LCP’s with solutions,
Lemke’s algorithm terminates either by finding a solution or by
encountering an unbounded ray.1 As a result, Lemke’s algorithm
is not suitable for solving non-PSD LCP’s.

However, when Lemke’s algorithm terminates by
encountering an unbounded ray, it has found an n-vector z→ with
the property[14]

z→ ≥ 0
→

and ∀i such that z→i > 0, (Az→)i ≤ 0 (10)

where (Az→)i is the ith component of the vector Az→. Why is this
property of interest? Suppose that a set of contact impulses are
applied to the configuration, with the magnitude of the normal
impulse at the ith contact point denoted by z→i . Then it can be
shown[2, 6] that the relative velocity at the ith contact point after
the impulse is (Az→)i . If the vector z→ satisfies equation (10) then
every contact point subject to a non-zero contact impulse z→i > 0
ends up with a non-positive relative normal velocity (Az→)i ≤ 0.
Thus, the vector z→ found by Lemke’s algorithm gives rise to a
valid set of contact impulses. To fully satisfy the definition of
validity, z→ must be scaled upwards from zero until it causes a
contact point with dynamic friction to be converted to static fric-
tion. After this, a real impact occurs, as described in section 6.1.

The behavior of Lemke’s algorithm exactly matches our
new view of the problem of computing contact forces. If the
configuration has no valid contact impulse solutions, Lemke’s
algorithm cannot terminate with the special vector z→ and must
therefore find a valid contact force solution. For inconsistent
configurations, no valid contact force solution exists, so Lemke’s
algorithm must terminate with the vector z→, providing a contact
impulse solution. For configurations with both a valid force and
impulse solution, Lemke’s algorithm will terminate by computing
hhhhhhhhhhhhhhhhhhhhh
1Encountering an unbounded ray when there is a solution is analogous to getting
stuck at a non-global minimum in a non-convex minimization problem.

one or the other. Whenever Lemke’s algorithm terminates by
computing a contact impulse solution, it will still be unknown
whether or not the configuration was consistent. For frictionless
systems, the LCP is always PSD and has a solution, so frictionless
configurations do not have valid impulse solutions. Thus, the
reformulation of the problem does not add any new solutions to
simulations of frictionless systems.

Although Lemke’s algorithm runs, practically speaking, in
polynomial time, this is not a proof that finding either valid con-
tact forces or impulses is a polynomial time problem. From a
practical standpoint, though, Lemke’s algorithm provides an
efficient algorithm for computing valid contact forces or impulses.
The computational complexity of either solving an LCP or finding
an unbounded ray is unknown.

8. Approaches for Static Friction
We conclude with two approaches to dealing with static

friction. We stress that these approaches are only a first step
towards dealing with the problems of static friction. Both
approaches have their drawbacks, and currently have only limited
applicability. The two approaches appear to produce (approxi-
mately the same) reasonably realistic results for the configurations
we have simulated.

Consider the ith contact point of a configuration, and let the
normal force magnitude there be fi . The coefficient of friction, µ,
is not indexed and may be different for each contact point. No
distinction is made between the coefficient of static and dynamic
friction, and both are assumed to be isotropic. In what follows,
there is no difficulty in using a different value of µ depending on
whether the friction force is static or dynamic. The next few com-
putations take place in the tangent plane of the contact surface at
each contact point; vectors are expressed in this plane as pairs
(x,y) where (1,0) and (0,1) are orthonormal. Let ( fx i

, fy i
) be the

friction force, and (vxi
,vyi

) and (axi
,ayi

) the relative tangential
velocity and acceleration between bodies at the ith contact point.2

If (vxi
,vyi

) is non-zero, then dynamic friction occurs and and the
friction force has magnitude µfi and is anti-parallel to the vector
(vxi

,vyi
).

Static friction is more complex. For static friction,

| ( fx i
, fy i

) | 2 = fx i
2 + fy i

2 ≤ (µfi)
2 . (11)

The main difficulty in static friction is determining when a contact
points makes a transition from sticking to sliding. When the static
friction force is sufficient to prevent sliding, any direction of the
friction force constraining (axi

,ayi
) to be zero is valid. If the body

begins to slide, then (fx i
, fy i

) must at least partially oppose the
acceleration; that is,

( fx i
, fy i

) . (axi
,ayi

) ≤ 0. (12)

Also, if (axi
,ayi

) is non-zero, then the friction force magnitude
must attain its upper bound of µfi . The law for static friction can
be summarized as

fx i
2 + fy i

2 ≤ (µfi)
2 , ( fx i

, fy i
) . (axi

,ayi
) ≤ 0 and

((µfi)
2 − ( fx i

2 + fy i
2))(axi

2 + ayi
2) = 0 (13)

where the last condition forces either (µfi)
2 = fx i

2 + fy i
2 or

axi
2 + ayi

2 = 0. Unfortunately, equation (13) is too complex to be
hhhhhhhhhhhhhhhhhhhhh
2Care must be taken here. The relative acceleration (axi

,ayi
) is calculated by taking

the first derivative of a velocity constraint, not the second derivative of a spatial con-
straint. See Goyal[8] for details.
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formulated as part of a quadratic program. It also does not appear
practical to solve with current non-linear programming tech-
niques.

8.1 The Dynamic Friction Approximation

This approach for approximating static friction is
extremely simple to implement. In order to determine whether
static friction or dynamic friction should occur at a contact point,
a simulator must have some threshold value ε. If | (vxi

,vyi
) | ≥ ε,

then dynamic friction occurs. Otherwise | (vxi
,vyi

) | < ε and static
friction occurs. Since dynamic friction is

( fx i
, fy i

) = µfi | (vxi
,vyi

) |

−(vxi
,vyi

)
hhhhhhhhhh (14)

we approximate static friction as

( fx i
, fy i

) =
ε

| (vxi
,vyi

) |
hhhhhhhhhhµfi | (vxi

,vyi
) |

−(vxi
,vyi

)
hhhhhhhhhh =

ε

−(vxi
,vyi

)µfihhhhhhhhhhh . (15)

Thus, we really use a dynamic friction force that varies in magni-
tude from zero to an upper limit of µfi as the relative contact
speed varies from 0 to ε. This allows us to use the method of sec-
tion 7.2 to compute both static and dynamic friction.

Since static friction occurs only when the relative tangen-
tial velocity is non-zero, bodies must acquire some small amount
of "crawl" in order to maintain a static friction force. This
approach is reminiscent of the penalty method, where bodies must
acquire some degree of inter-penetration for a sufficient normal
force to exist. However, in the penalty method, it is necessary to
increase the spring constant K without bound as the mass of
bodies increases. Our approximation method does not suffer from
this problem. If ε is made small enough, the "crawling" behavior
of bodies is not visible, no matter what masses or forces exist. If
ε is made excessively small, the differential equations of
motion[1, 3] may become stiff; otherwise, the approach has a rea-
sonable performance. The major advantage to this approach is
that it is guaranteed to produce a result, using Lemke’s algorithm
as described in section 7.2. Thus, either a set of contact forces or
impulses is computed. The major disadvantage to this approach is
that it is an ad hoc approximation to the law of static friction.

8.2 Modeling Static Friction by Quadratic Programming

This approach is much more ambitious. We attempt to
model static friction as a quadratic programming problem, which
can be solved to find the contact forces. We approximate the
static friction law as follows. Equation (11) is rewritten as

−µfi ≤ fx i
≤ µfi and −µfi ≤ fy i

≤ µfi . (16)

Unfortunately, this allows the static friction force magnitude to
exceed µfi (by as much as a factor of 1⁄2√dd2 ), unless the friction
force happens to be aligned with a coordinate axis of the tangent
plane. One possible solution is to iterate several times, trying to
choose a coordinate system so either fx i

or fy i
is zero, for each

contact point. For two-dimensional configurations however, the
friction force is constrained to a line, not a plane, and is described
by a single variable fx i

. In this case, the constraint −µfi ≤ fx i
≤ µfi

is exact.

To satisfy equation (12), we add the conditions

fy i
sgn( fy i

) ≥ 0 and ayi
sgn( fy i

) ≤ 0

fx i
sgn( fx i

) ≥ 0 and axi
sgn( fx i

) ≤ 0
(17)

where sgn(x) = 1 if x ≥ 0 and −1 otherwise. These conditions

ensure that ( fx i
, fy i

) . (axi
,ayi

) ≤ 0. The condition that static friction
attains its upper bound when slipping begins is written

(µfi − fy i
sgn( fy i

))(ayi
sgn( fy i

)) = 0.

(µfi − fx i
sgn( fx i

))(axi
sgn( fx i

)) = 0
(18)

Finally, we add the standard constraint on the normal forces that

fi ≥ 0, ai ≥ 0 and fiai = 0 (19)

where ai is the relative normal acceleration of the ith contact
point. If the signs of the fx i

and fy i
are known, then the above sys-

tem of equations has unknown variables fi , fx i
, fy i

(for each con-
tact point) which are used to express the ai , axi

and ayi
terms. The

entire system can be solved by a quadratic program because the
sgn functions become known. How can the signs of the fx i

and fy i
variables be determined?

Iterative methods for quadratic programming and linear
complementarity exist that can be adopted to this problem[14].
These iterative techniques are very similar to the Gauss-Seidel or
Jacobi iterative methods used to solve linear systems. Iterative
methods for quadratic programming are modified in a straightfor-
ward fashion to solve the system of equations (16) thru (19),
without initially knowing the signs of the fx i

and fy i
. Unfor-

tunately, convergence results are not available for the modified
iterative methods. If the modified method fails to converge (or
even before full convergence), the signs of fx i

and fy i
can be

guessed by examining the unconverged solution. Quadratic pro-
gramming is then used to solve equation (16) thru (19) as a qua-
dratic program, given the estimate of the signs of the variables. If
the estimate is correct, a solution is obtained for the friction
forces.

However, the approach can break down at any number of
places. If the method fails to converge, the estimates of the signs
of the variables may not be correct. Even if the signs of the vari-
ables are correct, the form of the linear constraints in equation
(16) do not allow us to use Lemke’s algorithm for linear com-
plementarity. Although we can apply standard quadratic pro-
gramming methods, we know of no algorithm that will solve the
quadratic program or indicate contact impulses, as Lemke’s algo-
rithm does. With regard to the entire issue of consistency and
NP-hardness, this method for static friction is back to square one.
It is possible that when the iterative step fails to converge, an
analysis of the divergence of the iterates will indicate a valid set
of contact impulses. At this time, however, we do not know how
to perform such an analysis.

We have found however that the second approach, when it
works, yields a very acceptable result. For large numbers of con-
tact points (n ∼∼ 40), the second approach sometimes breaks down,
while the first approach does not. We have had reasonable suc-
cess with the second approach for configurations with 40 contact
points or less.

9. Conclusion
An efficient algorithm for dealing with configurations of

bodies with only dynamic friction has been presented. Instead of
attempting to force a behavior that avoids contact impulses, the
algorithm allows either contact forces or contact impulses to
occur. Two preliminary approaches for dealing with static fric-
tion are presented. The first approach is an approximation using
the algorithm developed for simulating dynamic friction. The
second approach is more exact but also more prone to failure than
the first approach. Simulation of a complex configuration with
static and dynamic friction is shown in figure 11.
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Appendix A: Acceleration due to Contact Force

We compute the normal acceleration of pa , n̂ .p
..

a , for the
configuration of figure 2. Let a→ and α→ denote the linear and
angular acceleration of A, ω→, the angular velocity of A, and r→, the
displacement of pa from the center of mass of A. Vectors are
treated as 3-space vectors: a→, pa , p

..
a , n̂ and r→ lie in the xy plane

while ω→ and α→ are parallel to the z axis. From figure 1,
r→ = (−cosθ,−sinθ,0). p

..
a may be expressed as the sum of three

terms: the linear acceleration a→, the tangential acceleration α→× r→,
and the centripetal acceleration ω→× (ω→× r→). The linear accelera-
tion, a→, is

a→ =
m

fn̂ + µf t̂ + (−mg)n̂hhhhhhhhhhhhhhhh =
m

fn̂ + µf t̂hhhhhhhh − gn̂. (20)

The torque on A about its center of mass is r→× ( fn̂ + µf t̂), which
yields an angular acceleration of

α→ =
I

r→× ( f n̂ + µf t̂)hhhhhhhhhhhhh . (21)

Then

p
..

a = a→ + α→× r→ + ω→× (ω→× r→)

=
m

fn̂ + µf t̂hhhhhhhh − gn̂ +
I

r→× ( f n̂ + µf t̂)hhhhhhhhhhhhh × r→ + ω→× (ω→× r→). (22)

Taking the dot product of equation (20) with n̂,

n̂ .a→ =
m

fn̂ . n̂ + µf n̂ . t̂hhhhhhhhhhhh − gn̂ . n̂ =
m
fhhh − g. (23)

Taking the dot product of the tangential acceleration α→× r→ with n̂
and using the geometry of figure 1, n̂ .ω→× (ω→× r→) = | ω→ | 2sinθ and

n̂ . (α→× r→) = n̂ .
I
J
L I
r→× ( f n̂ + µf t̂)hhhhhhhhhhhhh × r→

M
J
O

(24)

=
I

f(cos2θ − µcosθsinθ)hhhhhhhhhhhhhhhhhh .

Then, from the relations in figure 1,

n̂ .p
..

a =
m
fhhh − g +

I
f(cos2θ − µcosθsinθ)hhhhhhhhhhhhhhhhhh + | ω→ | 2sinθ

=
m
fhhh(1 + 16(cos2θ − µcosθsinθ)) + | ω→ | 2sinθ − g (25)

=
m
fhhh(1 − 2) + | ω→ | 2sinθ − g = −

m
fhhh + ( | ω→ | 2sinθ − g).
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