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Predicting Appearance from Measured Microgeometry
of Metal Surfaces
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The visual appearance of many materials is created by micro-scale details
of their surface geometry. In this article, we investigate a new approach
to capturing the appearance of metal surfaces without reflectance measure-
ments, by deriving microfacet distributions directly from measured surface
topography. Modern profilometers are capable of measuring surfaces with
subwavelength resolution at increasingly rapid rates. We consider both wave-
and geometric-optics methods for predicting BRDFs of measured surfaces
and compare the results to optical measurements from a gonioreflectometer
for five rough metal samples. Surface measurements are also used to predict
spatial variation, or texture, which is especially important for the appearance
of our anisotropic brushed metal samples.

Profilometer-based BRDF acquisition offers many potential advan-
tages over traditional techniques, including speed and easy handling of
anisotropic, highly directional materials. We also introduce a new general-
ized normal distribution function, the ellipsoidal NDF, to compactly repre-
sent nonsymmetric features in our measured data and texture synthesis.
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1. INTRODUCTION

Surface reflectance models based on the microfacet theory [Blinn
1977; Cook and Torrance 1982; Walter et al. 2007] have be-
come predominant in computer graphics because they are simple,
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reasonably general, and they have consistently proven to be an
excellent fit for real materials [Torrance and Sparrow 1967; Ngan
et al. 2005a; Löw et al. 2012]. It has often been observed that the as-
sumptions of microfacet theory—namely that the surface is smooth
at the wavelength scale—are frequently violated, yet the models
nevertheless fit measurements well.

The way a surface reflects light is represented by its bidirec-
tional reflectance distribution function (BRDF). The shape of a
microfacet BRDF is primarily determined by the distribution of
micro-scale surface normals, which is represented as a normal dis-
tribution function (NDF). Traditionally, simple distributions based
on statistical assumptions about the surface, such as the Beckmann
distribution, are used so that the parameters can be obtained by
fitting to a relatively sparse set of BRDF measurements.

The limited expressiveness of the traditional distributions has led
more recently to methods that make denser BRDF measurements,
and use more general models, such as tabulations and mixture mod-
els, to represent the NDF. This gives greater expressive power;
but it requires dense angular measurement, leading to slow capture
processes or assumptions of large-area surface homogeneity. For
spatially varying surfaces, the problem is much more difficult, and
it is generally infeasible to achieve high resolution NDF acquisition.

This article explores a different avenue for capturing normal
distributions: obtaining them by measuring the microscopic surface
topography directly. Using a commercial profilometer, a standard
laboratory instrument that uses white-light interferometry through
a microscope to measure height fields, we measure surface heights
at 110nm resolution in roughly 7 seconds per 70 × 55μm region
(Figure 1(b)). From these measurements we predict the BRDF of
the surface, avoiding the need for scattering measurements.

We investigate two ways to predict BRDFs from surface height
data. Microfacet theory is based on geometric optics and derives the
BRDF from the geometric surface normals. However, it overesti-
mates the effect of wavelength-scale roughness, and we find that it
must be combined with spatial filtering for good results. A second
approach, uses the wave optics based, scalar Kirchhoff diffraction
theory, which makes weaker smoothness assumptions and treats
small detail in a more rigorous way, without the need for filtering.

The resulting distributions, from both the microfacet and Kirch-
hoff approaches, are very detailed and we are easily able to calcu-
late them for very small areas of surface—two things that are very
difficult to do at once with conventional optical measurements.
Despite their strong theoretical differences, we find both methods
produce similar BRDF predictions for our test surfaces. We further
present validation experiments that show close agreement between
the BRDFs predicted from the surface microgeometry and measure-
ments from a gonioreflectometer.

Most of our samples are highly anisotropic, and the normal dis-
tributions for small regions often exhibit noticeable skew with the
maximal direction shifted away from the average surface normal.
Existing parametric NDF models assume mirror symmetry and can-
not represent this effect. Thus we also propose the new ellipsoid
NDF model, which supports anisotropy and skew as a generalization
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Fig. 1. We present a method to predict the appearance of complex surfaces, such as this stainless steel #4 sample, from its micro-scale geometry. Commercial
profilometers can rapidly measure surfaces with sub-wavelength resolution, and we develop and validate methods to predict BRDFs from the surface data. The
method can predict both average BRDFs and characteristic textures, or spatial variations, that are visually important for our example materials.

of the widely used GGX/Trowbridge-Reitz NDF [Walter et al. 2007;
Trowbridge and Reitz 1975], and which can be efficiently evalu-
ated and importance sampled. Using this new NDF, we explore an
approach to statistically modeling spatial variation by computing
ellipsoid NDF parameters for a small set of contiguous patches, and
then synthesizing much larger textures with similar statistics.

This article opens up a new avenue for capturing the appearance
of surfaces with detailed normal distributions and spatial variation.
It has significant advantages compared to the usual optical methods:
it can achieve very high resolution in both space and angle, with rel-
atively short measurement times and off-the-shelf instrumentation.
Our current method is well suited to opaque single layer materials,
such as rough metals, however due to the limitations of the pro-
filometer and theories we utilize, it does not handle materials with
multiple layers, or with strong multiple or subsurface scattering.
While surface geometry alone is insufficient to predict appearance
those materials, such as paint or plastic, nevertheless surfaces form
an important part of most materials. We hope our work also con-
tributes to a better understanding of real world surfaces and how
they affect light, to assist the future development of measurements
strategies and models for a wider range of materials.

Some contributions of this article include the following.

(1) We propose a new approach to material appearance capture
based on surface microgeometry measurement with off-the-
shelf equipment, that has unique strengths compared with con-
ventional optical BRDF measurement.

(2) We demonstrate application of microfacet and Kirchhoff the-
ory for measured rough surfaces including developing filtering
modification for microfacet and formulation of Kirchhoff in
terms of new NDF-analogous term DK.

(3) We validate predictions of both theories against goniore-
flectometer measurements for a set of challenging rough,
anisotropic metal surfaces.

(4) We present new parametric NDF model that supports both
anisotropy and skew, called the ellipsoid NDF.

(5) We show a simple texture synthesis method, based on separa-
ble assumption, that can extrapolate visually important NDF
textures from a measurements of small regions.

2. RELATED WORK

Microfacet BRDF. Microfacet BRDFs [Torrance and Sparrow 1967;
Blinn 1977; Cook and Torrance 1982; Walter et al. 2007] are based

on a geometric optics model of how light reflects from a rough
surface, and have been shown to provide a good match to mea-
sured BRDF data for many real materials [Ngan et al. 2005b].
The surface is assumed to act as complicated curved mirror, or
equivalently as a collection of many small flat reflective facets (mi-
crofacets). The resulting BRDF depends on three components: the
microfacet Normal Distribution Function (NDF) term, a Fresnel
term based on the material’s complex index of refraction, and a
shadowing-masking term to ensure energy conservation. The NDF
term is the most important in determining the pattern of reflected
light, and many different parametric forms have been proposed. The
Beckmann distribution, based on isotropic Gaussian random sur-
faces, is often used [Cook and Torrance 1982]. To model anisotropic
materials, Ward [1992] used the anisotropic Beckmann distribution
while omitting the Fresnel and shadowing/masking terms for sim-
plicity. Ashikhmin and Shirley [2000] introduced an anisotropic re-
flection model using a Phong microfacet distribution. Walter et al.
[2007] showed that the Beckmann and Phong distributions are very
similar and introduced the GGX distribution to better fit a measured
BRDF dataset. GGX is mathematically identical to the NDF pro-
posed by Trowbridge and Reitz [1975] and an anisotropic extension
was proposed by Burley [2012]. This article introduces a new exten-
sion of the GGX NDF model that is better suited to modeling spatial
variation in anisotropic materials. While convenient for rendering,
parametric forms can be limiting and thus some methods have used
more general representations such as tabulated NDFs [Ashikhmin
et al. 2000; Wang et al. 2008].

By using geometric optics, microfacet theory assumes that
diffraction effects can be safely neglected. This is only a safe as-
sumption if the micro-surfaces are locally flat compared to the
wavelength. In other words, the surface should not contain any
roughness at scales near the wavelengths of visible light. Real sur-
faces often violate this assumption. Lacking access to actual surface
microgeometry, prior microfacet work has not addressed this issue.

Kirchhoff Scattering. Another approach for modeling BRDFs is
to use Kirchhoff theory [Beckmann and Spizzichino 1968], which
is based on wave optics and can correctly predict many diffrac-
tion effects. Kajiya [1985] suggested using Kirchhoff theory to
model anisotropic surface appearance but did not test against any
measured data. He et al. [1991] derived a BRDF model for a broad
class of Gaussian random surfaces using vector Kirchhoff theory.
Stam [1999] used scalar Kirchhoff theory to derive BRDF models
for periodic and Gaussian random surfaces based on the Fourier
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transform of their height correlation functions. His solution for
periodic structures was improved by Dhillon et al. [2014] to bet-
ter reproduce diffraction-grating-like effects seen in measured rep-
tile skins. Levin et al. [2013] used Kirchhoff theory to predict the
BRDFs of a specific class of surfaces that can be manufactured
using photolithography. Our measured microgeometries are irreg-
ular and not likely to fit into any of these prior categories, so we
have chosen to numerically estimate the scalar Kirchhoff integrals
directly rather than using one of these prior approximate solutions.
Cuypers et al. [2012] extend the definition of a BRDF using Wigner
distributions which can predict macroscopic near-field diffraction
effects, but that lies beyond the scope of this article and we will use
the standard BRDF definition.

Some prior work has compared measured BRDFs and microge-
ometry statistics for particular kinds of surfaces to test Kirchhoff-
based predictions. For example, Marx and Vorburger [1990] and
Li and Torrance [2005] tested surfaces specially prepared to be
approximately 1D or isotropic Gaussian respectively, and found
good agreement with Kirchhoff theory. Another study [Schröder
et al. 2011] tested isotropic surfaces with varying roughness (though
with lower roughness than our examples) against a more advanced
Kirchhoff-based model, called Generalized-Harvey-Shack theory,
and found good agreement. They extracted a statistical model of
their surfaces using a combination of optical profilometer and
atomic force microscopy measurements. In contrast to this prior
work, we use the measured microgeometry directly rather than as-
suming any particular statistical model for the surfaces, and demon-
strate that our method works even for highly anisotropic surfaces.

Spatially Varying BRDF. To capture important spatial variation,
many methods have been proposed for capturing densely sampled
BRDF measurements across surfaces. Dana et al. [1999] proposed
to use a spatial gonioreflectometer to directly measure spatially
varying BRDFs and bidirectional texture functions (BTFs) of real
surface materials. By measuring many pixels at once, camera-based
acquisition systems can be used to measure SVBRDFs [Gu et al.
2006], BTFs [Dana 2001; Müller et al. 2005; Han and Perlin 2003],
and reflectance fields [Garg et al. 2006] with dense sampling of
view and light directions over the hemisphere. Because of the need
to sample a 6D space, all these methods require complicated and
specialized setups, and they either require time-consuming acquisi-
tions or achieve low angular resolution. In comparison, we measure
NDFs directly, avoiding many of the difficulties and limitations of
radiometric measurements and achieving very high resolution in
both space and angle, though not over large surface areas.

Data-Driven BRDF Fitting. To limit the need for high angular
resolution, many methods fit parametric models to their spatially
varying BRDF measurements. Gardner et al. [2003] used a linear
light source to scan a surface and fit an isotropic Ward model at each
pixel in a fixed view. Lensch et al. [2003] separate surfaces into dif-
ferent materials and use Lafortune BRDF [Lafortune et al. 1997] fit
to each material cluster as a basis in which to represent spatial varia-
tion. Similarly, Goldman et al. [2005] use a basis of isotropic Ward
BDRFs to represent SVBRDFs. These methods capture detailed
spatial variation, but their low angular resolution requires assuming
that particular low-parameter BRDF models are sufficient. Using
device setup similar to Gardner et al., Wang et al. [2008] capture a
denser 2D slice of the 4D BRDF at each pixel in a fixed view, then
combine sparse data from many pixels to estimate tabulated NDFs.
Their NDFs are much lower resolution than with our method, and
their merging of NDFs relies on rotational symmetries that our data
shows do not always hold.

Dong et al. [2010] takes another approach to leveraging the lim-
ited variation of BRDFs on a sample. They assume that reflectance

over a given material sample forms a low-dimensional manifold,
allowing a two-phase process in which isolated measurements with
relatively high angular resolution, performed using a hand-held
BRDF capture device, are followed by a standard fixed-view image
capture under a varying area source. Based on microfacet BRDF
theory, a small number of measured NDFs then serve to infer a
spatially varying BRDF over the whole surface.

Modeling Microgeometry. Zhao et al. [2011] used X-ray com-
puted tomography (CT) to measure the volumetric micro-structure
of cloth, which was combined with estimated appearance parame-
ters from photographs to generate highly realistic images. In con-
trast, our focus is on surfaces and surface microgeometry, which
can be captured much more efficiently, and at higher resolution,
with profilometry than by CT. Yan et al. [2014] demonstrated a
method to compute the scattering directly from a detailed microge-
ometry using geometric optics, however they did not use measured
microgeometry or validate against BRDF measurements.

McKnight et al. [2001] used optical profilometers to measure
isotropic dielectric surfaces and compared the results to geometric
optics and Kirchhoff-based predictions for in-plane BRDF mea-
surements. They found both methods matched to the data well, but
unlike our results, they found no need to filter the geometric results,
likely due to the lower resolution of their geometric data. Sung et al.
[2002] used confocal microscopy to measure the microgeometry of
embedded flakes in an isotropic metallic paint and compare it to
inplane measured BRDF values under a geometric optics assump-
tion. They use a local least squares plane fitting to compute surface
normals that is similar to our filtering, however the paper states this
is being used for data interpolation purposes while we explicitly
use it to account for wavelength scale effects missing from geomet-
ric optics. Unlike these prior methods, we consider more general
anisotropic surfaces, including ones with higher roughness, validate
against both in and out of plane measurements, and provide essen-
tial tools for graphics applications such as practical BRDF models
and consideration of spatial variation.

3. METHOD OVERVIEW

Our goal in this work is to reproduce the complex appearance
of metal surfaces by measuring their surface microscale geometry
(with subwavelength resolution). An example is shown in Figure 1,
where we scan a brushed stainless steel sample to obtain its sur-
face microgeometry from which we are able to predict its highly
anisotropic average BRDF as well as visually important aspects of
its characteristic spatial texture.

Compared to more conventional direct BRDF measurement, our
indirect microgeometry approach has several advantages, especially
for anisotropic surfaces. Our approach provides extremely high
angular and spatial resolution in the BRDF, much higher than is
typically feasible with direct approaches. It requires only off-the-
shelf equipment (optical profilometers are available from multiple
manufacturers and used in photolithography and nanofabrication
industries). And it provides insight into the underlying physical
causes of a material’s appearance.

There are also some potential disadvantages to our microgeom-
etry approach. Scanning time is proportional to spatial extent, so
is not well suited to capturing low-frequency spatial features. Our
test surfaces contain considerable variation at small scales but are
homogeneous at large scales. Our method currently only attempts
to model first-surface reflections, so it only applies to materials,
such as metals, where this is the dominant effect. Also as an in-
direct method, it requires validation especially since real surfaces
generally do not satisfy all the assumptions of the surface scattering
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theories used. A major contribution of this article is to explore the
feasibility of this approach and validate the BRDF results for a small
set of challenging, extremely anisotropic metal samples.

The rest of the article is organized as follows. We begin by dis-
cussing optical profilometers and how we use them to scan surface
microgeometry in Section 4. Then we discuss two different theories
for predicting BRDFs from surface geometry. Section 5 describes
microfacet theory, which is based on geometric optics and is widely
used in graphics, as well as the spatial filtering modification we
found necessary when applying it to our data. Section 6 reviews
scalar Kirchhoff theory, a popular wave optics approximation for
predicting scattering from rough surfaces. Both theories include ap-
proximations and local smoothness assumptions that our surfaces do
not fully obey, so it is important to test their accuracy. In Section 7,
we measure five metal surfaces, one isotropic and four brushed, and
compare profilometer-based predictions against data from our go-
nioreflectometer, a specialized device that directly measures BRDF
values. Despite their considerable differences, we find that both the-
ories make similar predictions and show generally good agreement
with the gonioreflectometer data for our test surfaces.

Both microfacet and Kirchhoff theory predict that the primary
determinant of a BRDF’s shape is the surface’s normal distribution
function (NDF) or a function of a similar form that we can call
its effective NDF. Since in general BRDFs are 4D functions while
NDFs are only 2D, this is a significant simplification and much
easier to measure, store, and visualize. For generality, we represent
our NDFs as 1025×1025 tabulated data, which can represent even
extremely anisotropic and narrow NDFs such as found in some
of our samples. However the tabulated NDF form can be data-
intensive and inconvenient for rendering, especially if we want to
represent spatially varying BRDFs. In Section 8 we introduce a new
5 parameter extension of the popular GGX distribution that captures
the most significant NDF features in our data. This new distribution
is called the ellipsoid NDF, and supports both anisotropy and skew
(or shifting of the maximum of the distribution away from the
center). While not present in the large-scale NDFs, skew is a feature
that we see in our fine-scale NDF data and believe is important in
modeling their spatial variation.

Finally we explore a simple proof-of-concept method for mod-
eling the characteristic textures of brushed metals in Section 9 by
extrapolating from a relatively small set of measurements. Com-
puting NDFs for many smaller regions provides information about
how the BRDF varies spatially. We capture this data for two short,
narrow stripes aligned with the surface’s principal directions, fit the
data to the ellipsoid NDF, and then use a simple Fourier technique to
synthesize much larger textures with similar statistics. Our results
show that even this simple approach produces significantly more
realistic images than just using the average or large-scale NDF.

4. OPTICAL PROFILOMETER

Optical profilometers are commonly used in nanofabrication and
related areas to obtain accurate surface measurements. The model
we use is a Zygo R© NewViewTM 7300. This device, illustrated in
Figure 2, combines microscope optics with a white light interfer-
ometer. Light is split into two beams, with one reflecting off the
surface and the other from a reference mirror, and then recombined
causing interference effects dependent on the relative lengths of the
two paths. A camera observes the surface while the interferometer
is scanned vertically allowing it determine the surface height at each
pixel with sub-nanometer vertical resolution. Horizontal resolution
depends on the camera and microscope optics used. In our case, we
use a 640×480 camera set for 110nm horizontal resolution to scan a

Fig. 2. A photograph of the optical profilometer used for this article (image
courtesy of Zygo R©) and an illustration of of how it measures surface heights.

70×53μm region of the surface, and each scan took approximately
7 seconds. A horizontal translation stage moves the sample between
scans for rapidly capturing larger regions. Detailed info about this
device can be found online [Zygo R© 2011].

4.1 Profilometer Surface Measurement

To test our approach, we selected a set of five metal samples: QPanel,
stainless steel #4, stainless steel #3, aluminum #4, and copper #4.
The QPanel is a steel plate with an isotropic rough finish, while the
other four are commercially available brushed metal surfaces. The
number refers to the brushing type, with lower numbers correspond-
ing to coarser brushing. Surface roughness also depends strongly
on material properties; aluminum #4 is much rougher than stainless
steel #4.

For each sample, we measure its surface microgeometry using
the profilometer. Each scan generates a 640×480 grid of height
measurements covering a 70×53μm region of the surface, and we
perform multiple contiguous scans. For example, a set of 10×10
scans generates roughly 30 million height values covering an area
of 0.37mm2 in about 12 minutes. The 110nm horizontal resolution
allows us to measure surface detail down to and slightly below the
wavelength range of visible light. There is a roughly 2μm misalign-
ment between the boundaries of neighboring scans due to limita-
tions of the mechanical translation table, but we process each scan
individually and are not sensitive to this error.

Sample profilometer measurements for two of our samples are
shown in Figure 3. The data reveals the surfaces in great detail, but
also contains some artifacts. In some cases, the profilometer does
not return an height for a given point (shown as yellow points). This
can happen in locations with very steep slopes or too much local
surface complexity, creating ambiguous fringing patterns in the
interferometer. Such points are treated as missing data in subsequent
processing and constitute less than 5% of the measured area in each
of our datasets. More rarely, the profilometer sometimes returns
height values that are inconsistent with their neighbors, which we
refer to as outliers. These are likely points that should have been
marked as missing data but did not quite meet the interferometer’s
ambiguity threshold. We experimented with a variety of filters to
remove these artifacts, such as hole-filling and outlier-rejection.
However we noted these filters had very little effect on either our
microfacet or Kirchhoff-based BRDF predictions, and we ultimately
discarded the filters as unnecessary for our purposes.

Next we discuss two theoretical approaches for predicting BRDFs
from our measured surface data: microfacet and Kirchhoff. These
theories only consider first-surface reflection, which we believe is
the dominant mode in our test samples. They do not attempt to model
multiple or subsurface scattering, which can be very important in
other types of materials.
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Fig. 3. Profilometer measured surface microgeometry for aluminum #4
and stainless steel #4 samples. The blue regions correspond to a single
profilometer scan and contain measured heights for 640×480 surface points
at 110nm horizontal resolution. Larger areas (orange) are measured by
combining multiple scans. Grayscale intensity corresponds to surface height,
and yellow indicates points where the profilometer could not determine a
height.

Fig. 4. List of important symbols.

5. MICROFACET THEORY

Microfacet theory treats a surface as a curved mirror, or equivalently
as a set of tiny flat mirror facets, that obey geometric optics. At
each point, the surface reflects incident light into the corresponding
mirror reflection direction according to the local surface normal.
Therefore light coming from direction ψ will be reflected into a
given direction ω only by those parts of the surface where local
surface normal is equal to the half direction h, defined as: h =
(ψ + ω)/ ‖ψ + ω‖. The area density with a given local normal is
described by the surface’s normal distribution function (NDF). (A
list of symbols is given in Figure 4).

The BRDF corresponding to a microfacet model is given by

fr(ψ, ω) = DM(h) F (ψ ·h) G(ψ, ω)

4 |ψ ·n| |ω ·n| , (1)

where DM is the surface’s normal distribution function, F is a
Fresnel term, G is a shadowing-masking term, and n is the large-
scale or average normal of the surface. See Walter et al. [2007] for
a detailed derivation of this equation. The Fresnel term depends on
the material type and can be computed based on its refractive index

and extinction coefficients. The shadowing-masking term is needed
for energy conservation but its value is typically close to one except
for near-grazing angles. The most interesting and important term in
determining the BRDF shape is the normal distribution function.

Microfacet theory neglects wave effects, such as diffraction, and
may not be accurate for surfaces with roughness at scales near
the wavelength of light. All our test surfaces have roughness at
all the scales we could measure, including down to and below
the wavelengths of visible light. Most prior microfacet work has
estimated effective NDFs by fitting to BRDF data, without actually
measuring the real surface geometry or examining its relationship
to the fitted NDF. However our goal is to predict the BRDF from the
measured surface geometry, and we find that naively computing the
NDF according to its geometric definition does not work well in our
case. From wave optics it is well known that surface detail below
wavelength scale has much less effect on the reflection pattern, but
we did not find any consensus on how best to account for this effect
in a geometric optics context. Thus with some experimentation, we
developed a filtered geometric NDF estimation method, described
below, that uses a smoothing kernel to more accurately predict the
BRDFs for our test samples.

5.1 Filtered Geometric NDF Estimation

A surface’s normal distribution function (NDF) is a density function
over the sphere of directions that is proportional to the surface area
with a given surface normal m. The NDF can be defined geometri-
cally as

DM(m) = lim
|�m|→0

A(�m)

|�m| A⊥
S
, (2)

where �m is a small solid angle containing the direction m, A(�m)
is the area of the subset of the surface with normals inside �m,
and A⊥

S is the total projected surface area in the direction of the
average surface normal n. Histograms provide a convenient way
to numerically estimate NDFs. Instead of taking the limit, we dis-
cretize the sphere of directions into bins and evaluate Equation (2)
for the finite �m corresponding to each bin. For heightfield surfaces
such as ours, the NDF is restricted to the hemisphere around the av-
erage surface normal. To represent our tabulated NDFs, we project
this hemisphere onto the unit disk, and then embed it into a square
which is discretized into a 1025×1025 regular grid.

The straightforward way to compute the NDF would be to tri-
angulate the height data and evaluate the histogram using each
triangle’s area and normal. However, this naive approach estimates
broad NDFs, such as the one shown on the left side of Figure 5,
which predict BRDFs that are much wider than the actual BRDFs
as measured by our gonioreflectometer. The naive approach ignores
wavelength whereas we know from wave optics that surface detail
below wavelength-scale has much reduced influence on the BRDF.

Instead we developed a modified NDF estimation method that
uses a Gaussian filter to reduce the influence of small scale features.
At each surface data point, we fit a plane to the local height data that
minimizes the squared vertical distances to the plane, weighted by
a 2D Gaussian kernel based on horizontal distance from the point.
This process is also known as locally-weighted linear least squares
fitting. The normal to the fitted plane is taken as the effective local
surface normal at that point, and by accumulating a histogram over
many surface points, we estimate the effective NDF for the surface.
The Gaussian kernel tends to filter out small scale roughness, result-
ing in narrower NDFs that much more closely match our measured
BRDF data, as shown in Figure 5.
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Fig. 5. Comparison of naive and filtered geometric NDF estimation for our
Al#4 sample. The NDF on the left is computed using the simple geometric
NDF definition, while the one in the middle is computed using our Gaussian
weighting filter. Using the filtered NDFs results in a much better match to
NDF data inferred from our gonioreflectometer BRDF measurements on
the right. Color intensity corresponds the NDF value for the corresponding
normal direction, after projection from the hemisphere to the unit disk.

We experimented with different Gaussian kernel sizes and found
that a Gaussian with a standard deviation of one micron (σ = 1μm)
works well, so we have used this fixed kernel size for all our results.
However, we observe that the results are not very sensitive to small
changes in this parameter. One micron corresponds to roughly two
wavelengths for green light, which fits well with the intuition of
filtering out surface details that are wavelength scale and smaller.

6. KIRCHHOFF THEORY

Scalar Kirchhoff theory is a scattering approximation based on wave
optics which is often used to predict diffraction effects. Conceptu-
ally, the incident light induces secondary sources on the surface,
based on the Fresnel equations for a locally flat surface. These gen-
erate secondary waves that radiate outward and combine to form the
scattered distribution. The contributions of these secondary sources
are summed using complex numbers to account for phase and in-
terference.

Using scalar Kirchhoff theory, one can derive the following equa-
tion for the BRDF:

fr(ψ,ω) =

∣∣∣∣∫S R(s⇀, ψ, ω) (q⇀ ·m(s⇀)) e
−i

(
q⇀ · s⇀

)
ds⇀

∣∣∣∣
2

16π 2A⊥
S |ψ ·n| |ω ·n| , (3)

where the integral is over the surface S, s⇀ are points on the surface,
m(s⇀) are the local surface normals, R is the local Fresnel reflectance
coefficient, and A⊥

S is the total projected area of the surface in the
direction of the average surface normal n. A derivation of this
equation is included in the supplemental material and, other than
notation, is similar to derivations in standard texts [Beckmann and
Spizzichino 1968; Ogilvy 1991; Stam 1999]. We define the vector
q⇀ as

q⇀ = 2π (ψ + ω)

λ
= 4π

λq
h, (4)

where λ is the wavelength of the light. The length of q⇀ depends
on both the wavelength λ and the angle θd between the incident
direction ψ and exitant direction ω. The vector q⇀ is closely related
to, and collinear with, the half direction h from microfacet theory.
To make this clearer, we define an effective wavelength λq as

λq = λ
1
2 ‖ψ + ω‖ = λ

cos
(

θd
2

) . (5)

Let us assume that the Fresnel coefficient R is independent of
surface position, which is a common simplifying assumption used

in Kirchhoff scattering. Then we define the following function:

DK(q⇀) = 1

4π 2A⊥
S

∣∣∣∣
∫
S

(q⇀ ·m(s⇀)) e
−i

(
q⇀ · s⇀

)
ds⇀

∣∣∣∣
2

, (6)

which we call the Kirchhoff distribution, and rewrite Equation (3)
as

fr(ψ, ω) = DK(q⇀) |R(ψ, ω)|2
4 |ψ ·n| |ω ·n| . (7)

Now the microfacet and Kirchhoff BRDFs (Equations (1) and (7))
have a remarkably similar form. The Kirchhoff distribution DK is
analogous to the microfacet NDF DM. The same Fresnel equations
are typically used for both R2 and F , making them interchangeable.
Kirchhoff has no term matching G because in order to make the
problem tractable, Kirchhoff derivations usually neglect nonlocal
effects including shadowing-masking. However this causes Kirch-
hoff models to violate energy conservation for near-grazing angles,
and the same shadowing-masking approximation terms used in mi-
crofacet theory are sometimes added as a practical enhancement.
After adding such a term and some rewriting, we finally get the
following Kirchhoff-based BRDF model which we will use in our
results.

fr(ψ, ω) = DK(4πh/λq) F (ψ ·h) G(ψ,ω)

4 |ψ ·n| |ω ·n| . (8)

One significant difference is that DK(q⇀) is a 3D function while
DM(h) is a 2D function because h is required to be a unit vector.
However, for sufficiently rough surfaces, DK is often only very
weakly dependent on the length of q⇀ and our tests indicate this is
true for our surfaces. In such cases, we can approximate q⇀ as a fixed
length vector (e.g., by treating λq as a constant), thus effectively
reducing DK to a 2D function. Then we can view the Kirchhoff
distribution DK as being an alternate way to compute effective
NDFs for a microfacet-like BRDF.

In our implementation, we evaluate Equation (6) using a Monte
Carlo solver for a dense set of values and then store the results
using the same discrete 1025×1025 format as for the geometric
NDFs. This is significantly more expensive than the geometric NDF
estimation, but only needs to be done once per measured surface
patch. More details about this process are given in Appendix A.

Despite their very different definitions, we find that DK and our
filtered DM estimation generate fairly similar predictions for our test
surfaces. The strong similarity between the Kirchhoff and micro-
facet models may help explain why microfacet models have been
so successful despite their assumptions being frequently violated.
Prior works have derived microfacet BRDFs as approximate solu-
tions to the Kirchhoff integrals for particular statistical roughness
models [Beckmann and Spizzichino 1968; Stam 1999], but we have
not seen the relationship expressed in the more general form of
Equation (6) before.

7. GONIOREFLECTOMETER AND NDF
VALIDATION

Thus far we have discussed how we can measure the microgeometry
of a surface using an optical profilometer and how we can apply
either microfacet or Kirchhoff theory to predict its BRDF from this
measured data, at least for surfaces where first surface reflection is
the dominant scattering effect. Next we need to test the accuracy
of these predictions, especially since our test surfaces do not fully
satisfy the assumptions of either theory.

One important theoretical assumption is that the surfaces are
sufficiently smooth. The literature gives various “rules of thumb”
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Fig. 6. Left: Average fraction of the surface visible as a function of polar
viewing angle for our smoothest (stainless #4) and roughest (aluminum #4)
surfaces. Visibility is estimated by tracing rays against our measured surface
data. Our gonioreflectometer measurements are concentrated at small angles
(e.g., <40◦) where the visibility is close to one and G can be neglected
without introducing much error. Right: Example spectral reflectance data
from gonioreflectometer measurements of our stainless steel #4 surface for
a variety of angles. The spectra are all fairly simple and similar which
supports our finding that the NDFs for our surfaces do not show significant
variation with wavelength.

for when these theories can be safely applied, which can be roughly
summarized as: at wavelength scales the surface should either have
low curvature for Kirchhoff, or be essentially planar for microfacet.
Kirchhoff-based predictions are often assumed to be more accurate
because of its weaker assumptions and ability to predict a wider
range of phenomena (e.g., diffraction gratings). However since our
test surfaces violate the smoothness assumptions of both theories, it
is not immediately obvious if either theory will be accurate, much
less which will perform better.

To test the theoretical BRDF predictions, we also measure our test
surfaces using a gonioreflectometer, which is a specialized instru-
ment for directly measuring BRDF values. Our gonioreflectometer
[Li et al. 2005] consists of a collimated light source, a spectrome-
ter detector, and a sample holder. The motor-controlled mechanical
design moves the components with high angular resolution to mea-
sure the scattered light over a wide range of incident and reflected
directions. One limitation of our device is that it only has 3 motors
so it cannot reach every possible configuration the 4D BRDF space.
It also does not measure spatial variation but instead the average re-
flection from a roughly 4mm diameter region on the sample, where
the actual area varies with viewing angle. Its high angular resolution
and radiometric accuracy make it an excellent tool for validating
our predicted BRDFs. For these measurements, the light source and
detector are kept fixed while rotating the sample, which allows us
measure NDF details down to a resolution of roughly 1.5 degrees,
limited primarily by the aperture sizes of the source and detector.

Based on the theoretical importance of NDFs, we select a set of
measurements that span a wide range of half directions, h. Since
4D BRDF space is hard to visualize, we also project these measure-
ments into the 2D NDF space by inverting the Equation (1) to get
measurements of the effective NDF:

D(h) ≈ 4 |ψ ·n| |ω ·n| fr(ψ, ω)

F (ψ ·h)
, (9)

where fr(ψ, ω) is a gonioreflectometer measurement and we as-
sume the shadowing-masking term can be neglected (i.e., G ≈ 1),
which is generally true for nongrazing angles (see Figure 6 left).
We estimate the Fresnel term F using published refractive index
and extinction coefficients for the metal type (i.e., steel, aluminum,
or copper). For these tests, we fix the angle between the incident,
ψ , and reflected, ω, directions (θd = 14.14◦) while varying the half
direction, h, as illustrated in Figure 7. For each sample, we measure

Fig. 7. Illustration of gonioreflectometer measurement setup and NDF
projection onto unit disk for visualization. The red rectangle represents the
measured angle coverage over the projected hemisphere (green circle).

around 4000 half directions arranged in a customized pattern de-
signed to cover the most interesting parts of the NDFs, which takes
roughly 3 hours on our gonioreflectometer.

Besides the potential inaccuracies of microfacet and Kirchhoff
theory (e.g., both assume smoothness and neglect multiple scatter-
ing), there are several other issues to keep in mind when compar-
ing data from these two instruments. We currently cannot match
the exact measurement region, either in location or size, between
the profilometer and gonioreflectometer. Instead we try to mea-
sure large enough regions to provide a reasonable approximation
to the average BRDF for each test sample. The profilometer mea-
surements cover smaller areas and thus exhibit greater variability.
There are also small angular misalignments between the two in-
strument’s coordinate systems. The Fresnel term neglects surface
imperfections (e.g., oxidation) and relies on generic metallurgical
data, which causes some uncertainty in the absolute magnitudes of
the results. The gonioreflectometer’s source and detector apertures
limit its ability to resolve fine NDF features below about 1.5 de-
grees. This limit (sometimes called the instrument signature) was
determined empirically by measuring the NDF of a first-surface
mirror with the gonioreflectometer. In these comparisons, our pro-
filometer predictions have already been convolved by the measured
gonioreflectometer instrument signature to account for its resolution
limits.

Our gonioreflectometer measures spectral data at 10nm resolution
over the visible range; however, in our measurement data the NDFs
for our samples are mostly independent of the wavelength over this
range (Figure 6 right). Thus to simplify the presentation, we only
show data for a wavelength λ of 550nm in these comparisons. For
the Kirchhoff results we have set λq = 555nm to match the θd

configuration used in the gonioreflectometer measurements.

7.1 Large-Scale NDF Results

Next we test the predictions for our five test surfaces by com-
paring the effective NDF inferred from our gonioreflectometer
measurements to the profilometer-derived NDFs predicted by the
(microfacet-based) filtered geometric and Kirchhoff approaches.

Our QPanel surface has an isotropic appearance. We measured
a set of 20×20 scans on the profilometer, and Figure 8 shows the
measured effective NDF from our gonioreflectometer data and the
predicted NDFs from our profilometer data using our geometric
and Kirchhoff methods. As the plots show, both methods predict
a NDF that is nearly isotropic and in close agreement with the
gonioreflectometer data. In this case, the geometric NDF is the
better match while the Kirchhoff NDF is slightly wider.

The four brushed metal samples are highly anisotropic, and for
these we used sets of 4×100 profilometer scans, with the long axis
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Fig. 8. Comparison of measured and predicted NDF estimates for isotropic QPanel sample. (Left) NDF inferred from gonioreflectometer measurements,
(middle) NDF predicted by our geometric filtered normal method, and (right) predicted by Kirchhoff integral. For this sample the predicted NDFs are quite
close to each other and to the gonioreflectometer data.

aligned perpendicular to the brushing direction to better estimate the
average surface NDF. Figure 9 compares results from our geometric
filtered normal estimation method and Kirchhoff-based predictions
to the gonioreflectometer-derived NDFs. Overall the geometric and
Kirchhoff approaches produce very similar predictions and both
generally match the highly anisotropic shapes of the gonioreflec-
tometer well. In general the geometric method does a slightly better
at matching the NDF lobes in the wide (or cross-scratch) direction,
particularly for aluminum#4, while in the Kirchhoff is slightly bet-
ter at matching the narrow (or along-scratch) widths. However this
data does not present a clear case for preferring the geometric or
Kirchhoff methods and both seem sufficiently accurate for computer
rendering applications. For the remainder of this article we will use
the geometric method, mainly because it are easier to compute.

Rendered images generated from our profilometer-based tabu-
lated NDFs for each of our samples are shown in Figure 10. For
each material, we render sections of two cylinders with the BRDF,
or brushing direction, rotated 90 degrees on the left cylinder, and lit
by the St. Peters HDR environment map. For the isotropic QPanel,
both cylinders look similar, but for the brushed metals, the brushing
direction has an enormous effect on the appearance. Such narrow
and highly anisotropic NDFs are quite difficult to measure with
conventional techniques. The BRDFs in these images are spatially
homogenous and the texture-like patterns come from high frequency
variations in the estimated NDFs, which would could likely be re-
duced by measuring larger areas with the profilometer.

8. ELLIPSOID NORMAL DISTRIBUTION
FUNCTION

In this section, we introduce a new parametric NDF model with
the goal of compactly representing the anisotropy of our NDF data
as well as the asymmetric skew which occurs in tabulated NDFs
for smaller surface regions such as in the examples in Figure 11.
While not generally present in the average NDFs, we believe skew
is important for modeling spatial variation and will be essential
in the next section. None of the prior parametric models allow
all these kinds of asymmetric features. The ellipsoid NDF model is
controlled by five parameters with intuitive meanings and is efficient
for rendering while still providing a good fit to our measured data.

The GGX NDF is a single parameter NDF model proposed
[Walter et al. 2007] to fit some measured data, from ground glass,

better than the then standard Beckmann NDF [Cook and Torrance
1982]. It has since become widely used along with a two-parameter,
anisotropic extension called GTR2aniso [Burley 2012]. GGX is
mathematically identical to an earlier NDF model, Trowbridge-
Reitz [1975]. The Trowbridge-Reitz NDF was derived from the
normal distribution of a spheroid, which is a particular type of
ellipsoid with two axes of equal length.

The ellipsoid NDF corresponds to the normal distribution of an
arbitrary ellipsoid. It generalizes the GGX/Trowbridge-Reitz NDF
to more degrees of freedom while also providing a geometric in-
terpretation that is useful for computing related quantities. The
ellipsoid NDF is defined as

D(m) = X+(m ·n)

π |A| ‖A n‖ ‖A−Tm‖4
, (10)

where m is a microsurface normal, n is the large-scale, or average,
normal of the surface, and A is a 3 × 3 matrix with determinant
|A| and inverse transpose denoted as A−T. The normals are rep-
resented as unit length column vectors (i.e., ‖m‖ = ‖n‖ = 1).
Surface NDF models are typically restricted to be zero outside of
a hemisphere centered on the average surface normal n, which is
equivalent to using only half of the ellipsoid. The numerator formal-
izes this restriction using the indicator function for positive numbers
(i.e., X+(x)=1 if x ≥ 0 and is zero otherwise). Equation (10) cor-
responds to the normal distribution of an ellipsoid defined as the
points p⇀ that satisfy p⇀TATA p⇀ = C2

e for some constant Ce.
The matrix A controls the distribution shape. An ellipsoid has six

degrees of freedom (three axis lengths and three for orientation),
but the NDF normalization constraint (i.e.,

∫
D(m) |m ·n| dm = 1)

reduces this to five. It is convenient to specify A as the product of a
rotation matrix R and a scaling matrix S as

A = S R where S =
⎡
⎣αx 0 0

0 αy 0
0 0 1

⎤
⎦ and RTR = I. (11)

The scaling matrix provides two degrees of freedom in addition
to three for the rotation, to span the space of all possible ellipsoid
distributions. Let us assume we are working in a coordinate system
where the surface normal n is aligned with the z-axis. If the rotation
matrix is the identity (i.e., R = I or no rotation), then the ellip-
soid distribution reduces to be exactly the same as the anisotropic
distribution GTR2aniso in Burley [2012, Equation (13)]. And if we
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Fig. 9. Comparison of measured and predicted NDF estimates for brushed metal samples. For each sample, the 1st row shows the NDF inferred from
gonioreflectometer measurements. The 2nd row includes the 2D zoom-in plots of the NDF from the gonioreflectometer (left) along with those predicted by our
filtered normal method (middle), and by Kirchhoff integral (right). We further show the 1D NDF plots of two 1D perpendicular slices through the 2D NDFs:
cross brush direction (3rd row) and along brush direction (4th row).

further set αx =αy =α, then the distribution becomes identical to the
GGX/Trowbridge-Reitz distribution. As in those previous models,
the α parameters control the width of the distribution in two orthog-
onal directions and correspond to notions of surface roughness.

One convenient way to specify the rotation matrix is as the prod-
uct of three axis-aligned rotations:

R = Rx(θx) Ry(θy) Rz(θz) (12)

This parameterization provides nicely intuitive controls when θx and
θy are small, which is true for our data. The θ parameters in this space
each have a simple meaning. θz rotates the major axis of the BRDF
(e.g., rotates the brushing direction for brushed metals), while θx

and θy rotate the peak of the distribution away the direction of the
average surface normal. This shifting of the NDF peak away from
n is something that we observe when we estimate NDFs for small
areas and is important to be able to represent to capture the spatial

variation over our samples. This ability to skew the distribution is
not supported by any of the prior parametric NDF models, such as
GGX and Beckmann, and is why we developed the ellipsoid NDF.

We recommend the following energy-conserving shadowing
masking term for use with the ellipsoid NDF:

G(ψ, ω) = G1(ψ) G1(ω), (13)

G1(u) = min

(
1,

2 ‖An‖2 |u ·n|
‖Au‖ ‖An‖ + (Au) · (An)

)
. (14)

A supplemental document provides more details including deriva-
tions of the NDF, this shadowing-masking term, and efficient sam-
pling strategies for the ellipsoid NDF.

Figure 12 shows data from fitting the Ellipsoid and Beckmann
distributions to the large area tabulated NDFs for our metal samples.
For the large area NDFs, the ellipsoid θ parameters are all approx-
imately zero, making it equivalent to the GTR2aniso distribution.
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Fig. 10. Images rendered using our profilometer-derived geometric NDFs. Each image shows sections of two cylinders, where the BRDF has been rotated
90 degrees on the second cylinder. For the anisotropic samples, the brushing direction is horizontal on the left cylinder and vertical on the right. The cylinders
use spatially uniform BRDFs with any apparent texturing caused by angular variations within the BRDFs. Copper’s color is due to its Fresnel term.

Fig. 11. Example of the NDF variations for different subregions in stainless
steel #4 sample.

Fig. 12. Comparison of stainless steel #4 large area tabulated NDF with
fits to the Ellipsoid and Beckmann parametric NDFs, and fitted parameters
for all our samples. The Ellipsoid NDF usually provides a better fit to our
measured data than Beckmann as in the Stainless #4 example (top).

The ellipsoid NDF generally provides a better fit to our measured
NDFs than the Beckmann distribution, such as in the example shown
in the figure.

9. SPATIAL VARIATION

So far we have worked primarily with large-area average NDFs,
in order to have a meaningful comparison between the goniore-
flectometer and profilometer results. However, for rendering, the

spatial variation of the BRDF over the metallic surface is important
for the overall appearance of all our samples, especially the brushed
finishes. The profilometer data contains extraordinarily detailed in-
formation about spatial variation over the small areas we measured,
and since the spatial structure is essentially random and stationary
we take the approach of using a Gaussian random field model to
generate spatially varying NDFs that resemble the spatial variation
observed in the measured areas.

Our basic strategy is to fit the ellipsoid NDF model to small-area
NDFs derived from subsets of the profilometer data corresponding
to texels at the desired texture resolution. This produces a 5-vector of
ellipsoid NDF parameters at each texel over two very small texture
images. We assume that the variation in these parameters comes
from a Gaussian random field with a separable Fourier amplitude
spectrum, calculate a spectrum that fits the data, and then generate
a large area of 5-channel texture from our random field using the
inverse Fourier transform method. The resulting texture is then used
to define a spatially varying BRDF via the microfacet model and
the ellipsoid NDF.

We compute our textures from two sets of profilometer images:
one is 1 × 100 (a 53μm × 7mm area aligned across the scratches)
and the second is 100 × 1 (a 5.3mm × 70μm area aligned with the
scratches). We predict NDFs from the surface data in each block,
producing two samples of the texture we want: 100×1 and 1×100
5-channel parameter textures sampled at ∼400 texels per inch.

Synthesizing the texture from these exemplars is simple. We
calculate the 1D Fourier spectrum (retaining only the amplitude)
of each 1D texture and compute their outer product; under the
separability assumption this gives the 2D Fourier spectrum of a
5.3×7 mm2 area. Assuming this is a large enough area that the same
spectrum would be observed anywhere on the surface, we simply
upsample to the size of the desired texture, randomize the phase,
and use the inverse FFT to obtain the parameter texture. The whole
process is carried out independently per parameter, corresponding
to an assumption that the 5 parameters vary independently.

To test the feasibility and visual quality of this simple texture
synthesis procedure, in Figure 13 we compare a photograph of
our stainless steel #4 sample to the images rendered with matched
lighting. The sample is roughly 10cm square, the camera is directly
above it, and the light source spans roughly 9 degrees at a distance of
64cm and is rotated 23 degrees from the camera (toward the left). To
avoid problems with camera color demosaicing, we use grayscale
images. The three rendered images shown in the figure use the
average NDF (geometric method) from Section 7.1, the ellipsoid
fit to the average NDF, and the synthesized texture, respectively.
The highly anisotropic nature of the BRDF, creates a bright stripe
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Fig. 13. Comparison of a photograph of our stainless steel #4 samples and three images rendered under matched lighting using profilometer-based predictions
of its BRDF. The geometric NDF image uses the average BRDF estimated in Section 7.1 without any spatial variation. The next image is rendered using the
ellipsoid fit to the average NDF. The last image is rendered using our spatial variation, or texture synthesis method. While not a perfect match to the real texture,
using the synthetic texture significantly improves the visual realism of the renderings.

highlight on the surface. The geometric average NDF does a good
job of reproducing the general location and shape of this highlight
but obviously lacks the finer scale details visible within the lit
stripe. The rendered stripe is also slightly too wide, likely because
we have somewhat overestimated the narrow width of the NDF
lobe. The ellipsoid fit to the average NDF is nearly identical to it.
Using the synthesized texture adds detail within the highlight and
significantly improves its visual realism. While generally similar,
the texture exhibits a less structured appearance than the photograph
and contains some other kinds of artifacts. We suspect this is because
the texture is based on measurements span only ∼6mm and a tiny
fraction of the sample’s area which limits its ability to reproduce
larger structures. This could likely be improved by measuring larger
areas with the profilometer.

10. CONCLUSION

In this article we have presented an alternative approach for re-
producing real world material appearance based on measuring its
surface microgeometry and using that data to predict its BRDF. Our
approach leverages the increasing speed and resolution of surface
profilometer tools from the photolithography and nanofabrication
industries, and has many advantages over traditional BRDF capture
strategies. It handles highly anisotropic surfaces and is capable of
rapid BRDF acquisition with both high spatial and angular resolu-
tion, albeit with limited spatial extent. We explored both microfacet
and Kirchhoff-based theoretical approaches to predicting BRDFs
from surface detail, developed a new geometric NDF estimation
scheme, and validated the results against gonioreflectometer mea-
surements. Our results demonstrate that both the geometric and
Kirchhoff-based approaches can successfully predict the appear-
ance of highly anisotropic surfaces such as our brushed metal ex-
amples. We also presented the new ellipsoid NDF model, which
supports both anisotropic and asymmetric features, and have shown
how we can use it to model spatial variation for our sample materi-
als in a compact format that is convenient for rendering. We believe
our method has demonstrated state of the art results for our test
metal samples and opens a new avenue for future BRDF acquisition
methods based on microgeometry measurement.

Limitations and Future Work. Our methods only predict the first
surface reflection for the surfaces and thus is currently only suitable
for materials where this is the dominant effect, such as metal sur-
faces. Materials with important subsurface scattering, such as paint,

or more complex geometry, such as hair, are beyond the scope of
this article. Although only knowing the surface is not sufficient to
predict the appearance of such materials, nearly all materials contain
important surfaces. In future we would like to extend our method
to handle surface transmission and multiple scattering so that it can
be used an component in appearance modeling for a broader class
of materials. We are also limited in the total spatial extent of the
regions we can measure at such high resolution, and our approach is
not well suited for capturing large scale spatial patterns. Commer-
cial profilometers are continuing to improve in speed, so in future
may be feasible to capture much larger regions to get better spatial
statistics. Combining our technique with camera-based acquisition
for larger scales, is also an interesting avenue for future work.

ELECTRONIC APPENDIX

There are two electronic appendixes to this article in the ACM
Digital Library.

APPENDIX

A. COMPUTING KIRCHHOFF DISTRIBUTION, DK

In Section 6 we described how Kirchhoff theory can be used to
derive a BRDF model (Equation (8)) that is very similar in form to
microfacet BRDF models (Equation (1)). In this context, the Kirch-
hoff distribution DK (Equation (6)) can be viewed as an alternate
way to compute an effective NDF. The definition of DK already
includes a notion of wavelength scale, so there is no need to add
a filtering scale parameter as we did for the geometric-based NDF
estimation. However there are some practical issues related to its
computation.

Kirchhoff scattering models the incident light as a coherent plane
wave, but the light from real sources is more complicated. With
a plane wave, the phase of the incident light remains fully cor-
related regardless of distance between receiving points. In gen-
eral, however, phase correlation decreases with separation distance,
becoming incoherent for sufficiently distant receiver points. The
region size over which the phase remains correlated is called the
coherence area. For a simple uniform source the coherence area
is approximately given by: Ac ≈ λ2/��, where �� is the solid
angle subtended by light source in steradians [Mandel and Wolf
1995]. Scattered light under coherent illumination exhibits interfer-
ence effects (both constructive and destructive), which are modeled
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by the Kirchhoff integral, that are not seen with incoherent light.
Limiting the surface integral to regions matching the size of the co-
herence area is one way to account for this difference (e.g., [Levin
et al. 2013]). Unfortunately the actual coherence area depends on
details of the lighting configuration and usually is not known in
advance.

Experimentally we observe that the principal effect of limiting the
coherence area is a blurring of the effective NDF. This makes sense,
as the coherence area is closely related to the light source solid angle
which similarly limits our ability to observe fine details in the BRDF
and NDF. In practice, it suffices to choose a coherence area large
enough to preserve the major features in DK or to encompass likely
lighting configurations. Our profilometer patch size (70×53μm) is
just large enough to avoid broadening our narrowest NDF (stainless
steel #4) and also matches the measured coherence area for sunlight
(∼104λ2 [Mashaal et al. 2012]). Thus in this article, we compute DK

for each profilometer patch individually and then average its value
over all the patches in a dataset.

Equation (6) is a complex, highly oscillatory integral that must
be recomputed for each value of q⇀, We triangulate the profilometer
height data to create a surface, and estimate the integral for each
triangle, and sum over the patch. We tried different triangulations
as well as both analytic and Monte Carlo solvers, and found they
all produced essentially identical results. In our implementation, a
Monte Carlo solver with a simple triangulation is the fastest solver
and is used here. To compute each NDF, we fix λq and then evaluate
the surface integral for roughly 105 values of h to sufficiently resolve
the NDF in the region where it is significantly nonzero. The result is
then resampled and stored in the same discrete 1025×1025 format
as for the geometric NDFs.
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